
Computational Intelligence, Volume 24, Number 1, 2008

LEARNING STRUCTURED BAYESIAN NETWORKS: COMBINING
ABSTRACTION HIERARCHIES AND TREE-STRUCTURED

CONDITIONAL PROBABILITY TABLES

MARIE DESJARDINS AND PRIYANG RATHOD

Department of Computer Science and Electrical Engineering,
University of Maryland Baltimore County, Baltimore, MD, USA

LISE GETOOR

Department of Computer Science, University of Maryland, College Park, MD, USA

Context-specific independence representations, such as tree-structured conditional probability distributions,
capture local independence relationships among the random variables in a Bayesian network (BN). Local indepen-
dence relationships among the random variables can also be captured by using attribute-value hierarchies to find an
appropriate abstraction level for the values used to describe the conditional probability distributions. Capturing this
local structure is important because it reduces the number of parameters required to represent the distribution. This
can lead to more robust parameter estimation and structure selection, more efficient inference algorithms, and more
interpretable models. In this paper, we introduce Tree-Abstraction-Based Search (TABS), an approach for learning
a data distribution by inducing the graph structure and parameters of a BN from training data. TABS combines
tree structure and attribute-value hierarchies to compactly represent conditional probability tables. To construct the
attribute-value hierarchies, we investigate two data-driven techniques: a global clustering method, which uses all of
the training data to build the attribute-value hierarchies, and can be performed as a preprocessing step; and a local
clustering method, which uses only the local network structure to learn attribute-value hierarchies. We present em-
pirical results for three real-world domains, finding that (1) combining tree structure and attribute-value hierarchies
improves the accuracy of generalization, while providing a significant reduction in the number of parameters in the
learned networks, and (2) data-derived hierarchies perform as well or better than expert-provided hierarchies.

Key words: Machine learning, Bayesian networks, abstraction hierarchies, background knowledge, clustering,
MDL.

1. INTRODUCTION

Bayesian networks (BNs) are a widely used representation for capturing probabilistic
relationships among variables in a domain of interest (Pearl 1988). They can be used to pro-
vide a compact representation of a joint probability distribution by capturing the dependency
structure among the variables, and can be learned from data (Cooper and Herskovits 1992;
Heckerman 1995). Two forms of learning are possible: supervised learning (also called in-
ductive learning or classification, where one attribute is distinguished as the class variable
to be predicted) and unsupervised learning (where the goal is to discover patterns in the data
without a class label). Here, we focus on the unsupervised learning problem of density esti-
mation—that is, representing a joint probability distribution by inducing the graph structure
and parameters of a BN from training data. Note that the resulting BN is not necessarily
causal; the goal is simply to construct an efficient, compact representation of an observed
data distribution.

The conditional probability distributions associated with the variables in a BN are most
commonly represented as explicit conditional probability tables (CPTs), which specify multi-
nomial distributions over the values of a variable for each combination of values of its parents.
However, researchers have found that explicitly representing context-specific independence
relationships can reduce the number of parameters required to describe a BN (Boutilier et al.
1996). This reduction in parameters can result in more efficient inference (Poole and Zhang

Address correspondence to Marie desJardins, Department of Computer Science and Electrical Engineering, University of
Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA; e-mail: mariedj@cs.umbc.edu

C© 2008 Blackwell Publishing, 350 Main Street, Malden, MA 02148, USA, and 9600 Garsington Road, Oxford OX4 2DQ, UK.

2 COMPUTATIONAL INTELLIGENCE

2003) and more robust learning. In particular, learning methods have been developed that use
tree-structured CPTs (Friedman and Goldszmidt 1996) (TCPTs) and graph-structured CPTs
(Chickering, Heckerman, and Meek 1997) to represent the context-specific independence
relationships among the variables.

Previous methods for learning BNs assume that categorical features are already repre-
sented at an appropriate level of abstraction. This is typically accomplished by a domain
expert who manually identifies a “minimal” set of value groups that capture important dis-
tinctions in the domain. This process is essential for effective learning, because many-valued
categorical variables result in very large CPTs, and therefore are impractical for standard BN
learning methods.

As an example of an application that would benefit from automated value grouping,
consider an automotive domain, in which the goal is to capture the relationships among
various properties of different car models, such as the manufacturer, car type, model year,
gas mileage, performance, reliability, and cost. If this information is extracted from an existing
database or online source, many of the variables are likely to be either many-valued categorical
variables (such as manufacturer and car type), or continuous numeric variables (such as gas
mileage and cost). Discretization methods exist for numeric variables; however, little work
has been done on finding appropriate groupings for categorical variable values.

In our original investigation (desJardins, Getoor, and Koller 2000) we applied our methods
to an epidemiological data set of tuberculosis patients. In that application, the categorical
variables were place of birth and ethnicity. Because the data was from an existing database,
these variables had a large number of values. Our method was able to automatically identify
an appropriate abstraction level for each of these variables.1

We propose the use of attribute-value hierarchies (AVHs), combined with automated
search, to solve the value grouping process for categorical variables in BN learning, replacing
the manual feature engineering process described above. An AVH relates base-level values
of a categorical variable to abstractions (groupings) of these values.

In the automotive domain, an example of a many-valued categorical variable would be
the country manufacturer. The base-level values are specific manufacturers such as Honda,
Toyota, Ford, and BMW . Abstract values might include Japanese-Manufacturer, American-
Manufacturer, and European-Manufacturer. Attribute-value hierarchies are taxonomies de-
scribing the relationships between base-level values and abstract values.

In earlier work (desJardins et al. 2000) we introduced Abstraction-Based Search (ABS),
an algorithm that uses AVHs during BN learning. ABS searches the space of possible ab-
stractions at each variable in the BN. The abstraction process effectively collapses the corre-
sponding rows of the CPT, thus reducing the number of parameters needed to represent the
BN.

The abstractions provided by AVHs in ABS are complementary to those provided by
TCPTs. Therefore, we have also developed TCPT ABS (Tree-Abstraction-Based Search,
TABS) (desJardins, Getoor, and Rathod 2005), which integrates ABS with TCPTs. Our
earlier empirical results showed that TABS significantly reduces the number of parameters
required to represent a learned BN, compared to standard BN learning, ABS, or TCPT
learning alone.

Here, we present a more detailed comparison of learning algorithms that use tree-
structured conditional probability tables (TCPT), learning algorithms that make use of AVHs
(ABS), and learning algorithms that combine both (TABS). In addition, we introduce and con-
trast two data-driven methods for constructing AVHs. The first method is a global technique

1Unfortunately, this data is proprietary, and we no longer have access to it, so we were not able to test our newer methods
on it.

LEARNING STRUCTURED BAYESIAN NETWORKS 3

that uses all of the training data to cluster each variable. The second method is a local method
that uses only the local structure to construct an AVH for each parent link in the BN. Our
original motivation for developing these techniques was to enable the use of AVHs in domains
where expert-provided AVHs are not available. However, in our experiments, we found that
in general, the learned AVHs yielded equally or more accurate BNs (using a log likelihood
measure) as expert AVHs—and the learned AVHs resulted in substantially fewer parameters
in the BNs than expert AVHs. Interestingly, the global AVHs sometimes outperformed local
AVHs for standard ABS, but with TCPTs, local AVHs always yielded better performance
than either global or expert hierarchies. We speculate this this is because the TCPTs are
specifically intended to take advantage of local (context-specific) independence, so they ben-
efit more from the local hierarchies. Across all three dimensions, TCPTs with abstraction
and local hierarchies consistently yielded the best log likelihood and the fewest (or close to
fewest) parameters.

The remainder of the paper is organized as follows. We first give background on BNs,
TCPTs, AVHs, and learning methods for BNs with and without TCPTs (Sections 2–4). Next,
we introduce the ABS and TABS methods for incorporating AVHs into the learning process
(Sections 5 and 6), and the global and local clustering algorithms for deriving AVHs from
training data (Section 7). We then provide experimental results in three real-world domains
(Section 8), summarize related work (Section 9), and present conclusions and future work
(Section 10).

2. BAYESIAN NETWORKS

We assume that the reader has some familiarity with basic concepts of BNs (Pearl 1988)
and local search-based methods for learning BNs for density estimation (Heckerman 1995).
In this section, we briefly introduce the notation, learning methods, and scoring functions
that are used in the remainder of the paper.

A BN consists of an annotated directed acyclic graph that represents the joint probability
distribution of a set of random variables, X = {X1, X2, . . . , Xn}. We assume that the Xi are
all discrete finite-valued variables. The domain of variable Xi is denoted by

Dom(Xi) = {vi1, vi2, . . . , viri },
where ri is the number of values that Xi may take on (ri = |Dom(Xi)|). A BN over the
set of variables X is represented as a pair, B = (G, �). The BN structure, G, is a directed
acyclic graph over X, where the edges represent dependencies between variables. The BN
parameters, �, specify the set of conditional probabilities associated with B. A variable Xi is
conditionally independent of the other variables in the network, given its parents �i . Using
this independence assumption, the joint probability distribution can be factored as:

P(X) =
∏

i

P(Xi | �i). (1)

There are a number of ways to repesent the parameters (conditional probability distribu-
tions) in the network. When the random variables are discrete, the most common is using a
table of multinomials, which are referred to as CPTs. (We will later use the term flat CPT to
distinguish these simple tables from abstract and tree-structured CPTs.)

The CPT for variable Xi contains a row for each possible instantiation πi of X I ’s parents
�i ; the row gives the conditional distribution of Xi given that particular instantiation of �i .
We use T B(Xi) to denote the CPT associated with Xi , and �T B(Xi) to denote the associated

4 COMPUTATIONAL INTELLIGENCE

FIGURE 1. (a) A simple Bayesian network. (b) The CPT for P(Fuel Efficiency | Model, Hybrid).

collection of parameters. If ri is the number of possible instantiations of Xi , and qi is the
number of possible instantiations of the parents �i , then |�T B(Xi)| = ri · qi is the total number
of parameters in the table. (Because of the constraint that the probabilities in each row of
the CPTs must sum to one, there are fewer then ri · qi free parameters. Therefore, one can
encode a CPT compactly using qi · (ri − 1) parameters.)

Example 1. Figure1(a) shows a simple Bayesian network describing the Reliability, Price,
and Fuel Efficiency of a car, based on its Manufacture, its Model, and whether or not the car
is a Hybrid. The Model determines the Manufacturer, so there is a directed edge from Model
to Manufacturer. Figure1(b) shows the CPT for Fuel Efficiency, which depends on Model
and Hybrid.

2.1. Tree-Structured CPTs

While BNs with flat CPTs are easy to understand, and are useful for compactly repre-
senting a multivariate joint distribution, they can only capture certain kinds of conditional
independence. Let X , Y , and Z be sets of random variables. X is conditionally independent
of Y given Z in a distribution P if:

P(x | y, z) = P(x | z)

for all values x ∈ Val(X), y ∈ Val(Y), and z ∈ Val(Z). This relationship is denoted I(X , Y | Z).
This kind of conditional independence is easily captured by a BN with flat CPTs. However,
the requirement that this constraint holds for all possible values of Z is sufficient but not
necessary to establish conditional independence. A more flexible definition is the notion of
context-specific independence (Boutilier et al. 1996). Let X , Y , Z, and C be disjoint sets of
random variables. X is contextually independent of Y given Z in context c ∈ Val(C) if:

P(x | y, z, c) = P(x | z, c) (2)

for all values x ∈ Val(X), y ∈ Val(Y), and z ∈ Val(Z). This relationship is denoted
I(X , Y | Z, c).

The most common representation for context-specific independence is using tree-
structured CPTs (TCPTs). The leaves in a TCPT represent different conditional distributions
over the values of Xi ; the path from the root to a leaf defines the parent context c for that

LEARNING STRUCTURED BAYESIAN NETWORKS 5

FIGURE 2. (a) A simple Bayesian network; note that because we are using TCPTs instead of flat CPTs, the
structure of the BN may be different. (b) The TCPT for P(Fuel Efficiency | Model, Hybrid).

distribution. That is, a particular context c specifies the values for a subset of Xi ’s parents,
C ⊆ �i . The other parents (�i\C) correspond to the Z variables in equation (2). We use
TR(Xi) to denote the TCPT associated with Xi , and �T R(Xi) to denote the associated collec-
tion of parameters. If li is the number of leaves of the tree TR(Xi), then |�T B(Xi)| = li · ri is
the total number of parameters in the tree. For a particular leaf l, we use πi (l) to denote the
set of parent instantiations πi that correspond to that leaf, and θl to denote the conditional
distribution described at that leaf.

Example 2. Figure 2(a) shows a Bayesian network over the same set of random variables
as Example 1. Figure 2(b) shows a TCPT for Fuel Efficiency based on Model and Hybrid. In
this case, we see that if the car is a hybrid (Hybrid = yes), then Fuel Efficiency is independent
of Model; however, when Hybrid = no, then Fuel Efficiency depends on Model. Note also
that the BN structure is different; this will often be the case with TCPTs, because they are
able to capture more intricate forms of contextual independence.

A TCPT can result in a more compact representation than a flat CPT. We define the
compression ratio as the ratio of the number of parameters required by a flat CPT to a TCPT.
In our example, the compression ratio for Fuel Efficiency is 1.7, because the flat CPT required
24 parameters, while the TCPT requires 14.

2.2. BNs with Attribute-Value Hierarchies

Abstraction hierarchies are a commonly used form of knowledge that is intended to cap-
ture useful and meaningful groupings of feature values in a particular domain. An attribute-
value hierarchy (AVH) is essentially an IS-A hierarchy for categorical feature values. The
leaves of the AVH describe base-level values, and the interior nodes represent abstractions
of base-level values. Each abstract value corresponds to a set of base-level values. The root
node of the AVH is a wildcard value that is equivalent to the set of all base-level values. An
AVH need not be balanced (i.e., the path length from leaf values to the root can vary), and the
branching factor (number of children) can vary within the hierarchy. Given a value a in the
AVH, spec(a) returns its specializations (i.e., its children in the AVH), and gen(a) returns its
generalization (i.e., its parent). The specialization of a leaf is empty, and the generalization
of the root is empty.

A cut through the AVH defines a set of feature values called an abstraction, which is
formally equivalent to a partitioning of the base-level attribute values. An abstraction is legal
if every base-level value is covered by exactly one value in the abstraction. We use abs(Xi) to

6 COMPUTATIONAL INTELLIGENCE

FIGURE 3. (a) A simple attribute-value hierarchy for the car model attribute. (b) The abstract CPT
for P(Fuel Efficiency | Model, Hybrid), where Model is represented at the abstraction level A(Model :
Fuel Efficiency) = {sportscar, sedan, SUV}.

denote the set of legal abstractions of Xi . (Note that an abstraction can include both abstract
(interior) and base-level (leaf) values from the AVH.)

An advantage of using AVHs is that we can define a CPT for a node over abstract values
of the parent, rather than having a row for each parent value. When a parent is represented
at an abstract level, the rows in the CPT are effectively collapsed together.2 We refer to this
representation for a CPT as an abstract CPT , and use AB(Xi) to denote the abstract CPT
associated with Xi . Abstract CPTs have the advantage of reducing the number of parameters
required to describe the conditional probability distribution at a node. Abstract CPTs represent
a different form of context-specific independence than TCPTs. Specifically, they indicate that
certain distinctions among the parent values are unimportant.

For each Y ∈ �i , we define an associated abstraction level A(Y : Xi). (A BN node can have
a different abstraction level for each of its children, so the abstraction level depends on which
child node’s conditional probability distribution is being modeled.) An abstract instantiation
of the parents of Xi , denoted πai , is an assignment of a value from A(Y : Xi) for each Y ∈
�i . In the abstract CPT, there is a row in the table for each possible abstract instantiation πai

of the parents. Similar to a context in a TCPT, πai defines a set of of parent instantiations
πi for which Xi has the same conditional distribution, denoted θπai

. For a particular abstract
instantiation, πai , we use πi (ai) to denote the set of base-level instantiations which map
to θπai

.

Example 3. Figure 3(a) shows an AVH for the car model in our running example. The set of
shaded nodes {sportscar, accord, maxima, SUV} corresponds to a legal abstraction; it is a
cut through the tree. Figure 3(b) shows the abstract CPT AB(Fuel Efficiency | Model, Hybrid)
that represents the conditional probability distribution P(Fuel Efficiency | Model, Hybrid). In
this example, the abstraction used for Model is {sportscar, sedan, SUV}.

An abstract CPT can result in a more compact representation than a flat CPT. In our
example, the compression ratio for Fuel Efficiency is 2.0, because the flat CPT required 24
parameters, while the abstract CPT requires 12.

2.2.1. Combining TCPTs and AVHs. Both TCPTs and abstraction hierarchies allow
us to capture context-specific independence. A natural question is whether they capture the
same type of independence. It turns out that they do not. The TCPTs allow us to completely

2In principle, the values of the child node can also be abstracted; in this case, columns of the CPT are collapsed. The
abstract values are then partially specified in inference and learning tasks; this can be handled by a uniform distribution or by
applying another method for partially specified or missing data. In this work, however, we consider only parent abstractions.

LEARNING STRUCTURED BAYESIAN NETWORKS 7

FIGURE 4. An abstract TCPT for P(Fuel Efficiency | Model, Hybrid). In this example, the tree splits first on
Hybrid; next, Model is refined to {sportscar, sedan, SUV}; finally, sedan is further refined to {accord, maxima}.

ignore a random variable in certain contexts, while abstract CPTs represent finer-grained
constraints, which allow us to ignore the distinctions between certain values of a random
variable.

We show in this paper how to combine the two approaches by building a TCPT that splits
on abstract values, rather than the base-level values. We refer to this approach as abstract
tree-structured CPTs, and use AT(Xi) to denote the abstract TCPT associated with Xi .

Figure 4 shows an abstract TCPT, AT (Fuel Efficiency | Model, Hybrid), for the conditional
probability distribution P (Fuel Efficiency | Model, Hybrid). An abstract TCPT can result in
a more compact representation than a flat (or abstract) CPT. In our example, the compression
ratio for Fuel Efficiency is 2.4, because the flat CPT required 24 parameters, while the abstract
TCPT requires 10.

3. LEARNING BNS FROM DATA

Given a set of N instances, D = {d1, d2, . . . , dN}, where each d j is a vector of values for
each random variable:

d j = 〈x1 j , x2 j , . . . , xnj 〉 ∈ Dom(X1) × . . . × Dom(Xn),

we would like to learn a BN that best matches this data. Because this problem is NP-hard
(Chickering, Geiger, and Heckerman 1994), typically a simple greedy hill-climbing search
is used. At each step, the new graph is evaluated using a scoring function; if the modification
leads to a better network, then it is retained. When there are no missing values in the data,
the commonly used scoring functions can be decomposed locally, so that when an edge is
added or deleted, only the score of the variable Xi whose parent set �i changed needs to be
re-scored.

3.1. Scoring Functions

A variety of scoring functions have been used in local search for BN learning; the most
commonly used are the Bayesian score and Minimum Description Length (MDL) score (or its
equivalent, the Bayesian information criterion). In our work, we use the MDL score, because
it provides a natural framework for incorporating the notion of model complexity. The MDL
score is also related to regularization, which is frequently used in machine learning to avoid
overfitting and to bias learning toward simpler models.

8 COMPUTATIONAL INTELLIGENCE

The MDL score favors the hypothesis (i.e., the BN, B) that minimizes the description
length of the data. The description length is the sum of the encoding length of the data
using the BN (which essentially measures the training error) and the encoding length of the
BN itself (which captures the idea of model complexity). The mathematical derivation of
the MDL score was presented by Bouckaert (1994) and by Lam and Bacchus (1994); our
presentation here is based on Friedman and Goldszmidt (1996). We first describe the MDL
score for flat CPTs, and then describe the MDL score for abstract CPTs, TCPTs, and abstract
TCPTs.

Note that our general approach, of searching through the abstraction space, could be
applied to BN learning using any scoring function. This would require only extending the
scoring function to incorporate a notion of the score of an abstraction level, as we have done
here for the MDL score.

3.1.1. MDL for Flat CPTs. There are two components of the encoded model: the BN
itself and the data encoded using the BN. The description length DL is thus given by:

DL(D) = DL(B) + DL(D | B). (3)

The description length of the BN, DL(B), can be further decomposed into the description
length of the structure G, plus the description length of the parameters. To describe the
structure, for each Xi , we need to record the parents �i . Because there are n random variables,
log n bits are required to record each parent,3 so the description length of the structure is
simply:

DL(G) =
n∑

i=1

|�i | · log n, (4)

where |�i | is the number of parents of Xi .4 To encode the parameters of the BN, �, we have

DL(�) =
n∑

i=1

DL(TB(Xi)). (5)

For flat CPTs,

DL(TB(Xi)) = DL(θTB(Xi)) = 1

2
(ri − 1) · qi · log N , (6)

where ri is the number of possible instantiations of Xi , qi is the number of possible instantia-
tions of the parents �i , and 1

2 log N is the number of bits required to represent a probability
entry (see Friedman and Yakhini 1996, for a discussion of why the penalty term is logarithmic
in the sample size N).

The description length of the data, DL(D | B), is the number of bits required to encode
the data D given B. This can be approximated by:

DL(D | B) =
N∑

i=1

log P(di), (7)

3All of the logarithms are assumed to be base 2.
4Friedman and Goldszmidt (1996) actually use a more compact encoding, which stores the number of parents and an

index into all
(n

k

)
subsets of k variables.

LEARNING STRUCTURED BAYESIAN NETWORKS 9

where P is the distribution defined by the BN B. Factoring this according to the BN structure,
equation (7) can be rewritten in terms of the conditional entropy of each random variable:

DL(D | B) = N ·
n∑

i=1

H (Xi | �i), (8)

where H (X | Y) = − ∑
x,y p(x, y) log p(x | y). If we choose the parameters that minimize

the encoding (which is the obvious choice, because these are the parameters that maximize
the likelihood of the data), equation (8) becomes:

DL(D | B) = N ·
n∑

i=1

∑
xi ,πi

− Nxi ,πi

N
· log

Nxi ,πi

Nπi

, (9)

where the N . terms are the empirical counts of the number of times the specified assignment
to a subset of the random variables is observed in the data D, and xi and πi are particular
instantiations of Xi and �i . (Note that following common practice, we use Laplace smoothing
(adding one to every count) to avoid zero counts.)

3.1.2. MDL Score for TCPT Learning. When the CPTs at each node in the BN are
represented as trees (TXi), the encoding of the local probabilities becomes:

DL(TB(Xi)) = DLstruct(TXi) + DL(θTB(Xi)), (10)

where DLstruct (TXi) is the description length of the structure of the TCPT TXi .
We use the MDL scoring function for TCPTs described by Friedman and Goldszmidt

(1996). For each node, one bit is needed to record whether it is a leaf node or an internal
node. For each internal node in the tree, we need to describe which parent is tested, and then
describe its subtrees. Along a path from the root to a leaf, each parent can only be tested once.
We use nπ to denote the number of untested parent nodes at an internal node. The structure
component is calculated by the following recursive formula:

DLstruct (t) =
{

1 if t is a leaf
1 + log(nπ) + ∑

tk∈children(t) DLstruct(tk) otherwise.
(11)

The second component in equation (10), DL(θTB Xi), is the description length of the
parameters for the TCPT, which is given by:

DL(θTBi) = 1

2
(ri − 1) · li · log N (12)

(Recall that the term li refers to the number of leaves in the TCPT.) This is essentially the
same as equation (6), the description length for the parameters of the flat TCPT.

Finally, the DL(D | B) component of the score is the same as that for a flat CPT (equa-
tion (8)).

3.1.3. MDL for Abstract CPTs. For abstract CPTs, the MDL computation is the same
as for flat CPTs, except that we need to record the abstraction level for each parent. DL(θ) is
given by:

DL(AB(Xi)) = DLabs−levels(AB(Xi)) + DL(θAB(Xi)), (13)

where

DLabs-levels(AB(Xi)) =
∑
Y∈�i

log |abs(Y : Xi)| (14)

10 COMPUTATIONAL INTELLIGENCE

and

DL(θAB(Xi)) = 1

2
(ri − 1) · ai · log N , (15)

where ri is the number of possible instantiations of Xi , ai is the number of possible abstract
instantiations of the parents �i , and 1

2 log N is the number of bits required to represent a
probability entry.

3.1.4. MDL Score for Abstract TCPTs. The MDL computation for abstract TCPTs
uses the same graph and data description lengths as the other types of CPT. The description
length of an abstract TCPT is the same as equation (11), the description length for a TCPT.
The only difference is that each parent can occur multiple times along a path from the root
to the leaf, at successively lower levels of abstraction. Therefore, instead of nπ possible
splits, where nπ is the number of untested parent nodes at an internal node, we have aπ

possible splits, where aπ is the number of parent nodes whose value in the current context c
is not a base-level value. (In other words, aπ is the number of parent nodes with remaining
refinements.)

DLstruct(t) =
{

1 if t is a leaf
1 + log(aπ) + ∑

tk∈children(t) DLstruct(tk) otherwise.
(16)

4. LEARNING BNS WITH TCPTS

As mentioned in the previous section, learning the BN structure is typically accomplish-
ing using a greedy hill-climbing search. For learning BNs with flat CPTs, the local search
operators are AddEdge(X , Y), which adds X as a parent of Y ; DeleteEdge(X , Y), which
removes X from the parent set of Y ; and ReverseEdge(X , Y), which reverses the edge
between X and Y . The constructed graph must be acyclic, so before adding or reversing an
edge, we must check that the resulting graph will remain acyclic.

When learning tree-structured CPTs, the search becomes a bit more complex; in addition
to deciding which node should be the parent of another, we must build a good decision tree
representation for the conditional distribution of each node given its parents. There are two
distinct approaches, which we refer to as batch CPT learning and incremental TCPT learning.

4.1. Batch TCPT Learning

In batch learning, each time the parents of a node are changed—by either adding or
removing a parent—the decision tree is re-learned. This is the approach described by Friedman
and Goldszmidt (1996). Because learning an optimal decision tree is in itself a hard problem,
the batch tree learning algorithm is also a locally greedy search algorithm. The algorithm
is an instance of the classical recursive decision tree learning algorithm: at each step, it
chooses a random variable to split on, and then, after filtering the instances appropriately,
recursively builds subtrees for the partitioned instances. The choice among the possible
random variables to split on is made by choosing the one with the best MDL score. After
building the full decision tree, there is a “post-pruning” step, which removes any splits that
do not improve the overall MDL score. The batch tree learning approach is computationally
expensive because the decision tree must be recomputed at each step.

LEARNING STRUCTURED BAYESIAN NETWORKS 11

FIGURE 5. Incremental TCPT learning algorithm: the AddSplit and ExtendTree procedures.

4.2. Incremental TCPT Learning

An alternate approach is to fully integrate the tree construction process into the BN
structure search. We present an incremental approach that (1) does not require re-learning
the entire TCPT each time a node is added; (2) does not require post-pruning; and (3) allows
for abstraction to be incorporated seamlessly.

Instead of using the AddEdge and DeleteEdge operators to add and remove edges from
the network structure, we use AddSplit and RemoveSplit to add and remove split nodes in
the individual TCPTs, as the basic operations in the hill-climbing search.5 When the learning
algorithm adds a split on Y to a leaf of the TCPT for X , when Y has not yet been split in
any of the other nodes in the TCPT, this effectively adds an edge from Y to X in the network
(the AddEdge operation in the original search). Similarly, removing the last occurrence of
Y from the TCPT of X is equivalent to removing the edge from Y to X (DeleteEdge).

In our representation, each node X has a list of RefCandidates(X), which are the leaves of
TX , and are potential candidates for further refinement. Each leaf node l of the TCPT has an
associated set of SplitCandidates(l), which specifies the candidate variables that are available
for further splitting. When refining the TCPT, the algorithm tries all possible variables in each
leaf’s SplitCandidates set, and then selects the refinement that offers the largest improvement
in the MDL score. Initially, a variable X with no parents starts with a single root node in its
TCPT which is the only RefCandidates; all other variables Y are in the root’s SplitCandidates
set. As the TCPT is refined, the procedure AddSplit (Figure 5) propagates these candidates to
the new leaf nodes after removing the candidate associated with the selected refinement. The
need for separate SplitCandidates sets for each leaf node will become obvious in Section 6
when we explain how abstraction hierarchies are incorporated into TCPTs.

The optimal single-step refinement can be found by evaluating all possible refinements
for all variables in the BN, and choosing the one that most improves the MDL score. However,
this is computationally infeasible; therefore, we instead randomly choose the next variable
to refine, and use the stochastic procedure ExtendTree (Figure 5) to select a leaf node to

5ReverseEdge is not included as an operator in the TCPT learning algorithm, because it would be inconsistent with the
incremental approach.

12 COMPUTATIONAL INTELLIGENCE

refine. The probability of a leaf node being selected for refinement is proportional to the size
of the SplitCandidates set at that node. The selected node is then refined using the candidate
split (if one exists) that leads to the largest improvement in the MDL score of the tree. This
process of selecting a variable and then applying AddSplit and RemoveSplit to modify its
TCPT is performed until a local minimum is reached in the MDL score for the BN.

5. LEARNING WITH ABSTRACT CPTS

Next we describe how structure learning is done for BNs with abstract CPTs. The ABS
algorithm (desJardins et al. 2000) extends the standard search over network structures as
follows. When an edge is added to the network, the parent Xi is added at its most abstract
level, using the top-level values in the AVH. For example, if Model is chosen as a parent of
another node, the initial abstraction level would be {sportscar, sedan, SUV}.

ABS extends the standard set of BN search operators—AddEdge, DeleteEdge, and
ReverseEdge—with two new operators: Refine(Y , X , a) and Abstract(Y , X , a). Refine(Y ,
X , a) replaces the abstract value a of Y in X ’s CPT with a’s children, spec(a). If a is a leaf
node, then Refine has no effect. Similarly, Abstract(Y , X , a) replaces the value a of Y , and
its siblings, in X ’s CPT with a’s parent, gen(a). If a’s parent is the root node, then Abstract
has no effect. Notice that we only abstract the values of a parent; the values of the child (Xi)
are never abstracted.

The search process is a greedy search algorithm that repeatedly applies these five op-
erators to the current network, evaluates the resulting network using the MDL score, and
replaces the current network with the new one if the latter outscores the former.

6. THE TCPT ABS (TABS) LEARNING ALGORITHM

TCPTs take advantage of the fact that the value of a node can be independent of the values
of a subset of its parents, given a local context. By incorporating AVHs into TCPT learning,
we can also take advantage of the fact that certain parent values may have similar influences
on the conditional probabilities of the child node. This reduces the branching factor of nodes
with AVHs, and allows the decision about whether to make a distinction between certain
values to be postponed until it is required. As a result, the number of parameters needed for
the learned BN is reduced.

Our TCPT ABS (TABS) learning algorithm extends the TCPT learning algorithm de-
scribed in Section 4, by allowing the nodes in the TCPT to be modeled at different levels
of abstraction. In basic incremental tree learning, there are two operators, AddSplit and
RemoveSplit. In TABS, we also have two operators: RefineSplit and AbstractSplit.
RefineSplit(Y , X , l) specializes the leaf node l in X ’s TCPT by introducing a single-step
refinement of the parent variable Y . If Y does not appear in the context for l, then this re-
finement represents adding an edge from Y to X at the top-level abstraction of Y . Similarly,
AbstractSplit(Y , X , l) removes the split node l, from X ’s TCPT. If this is the last split that
mentions Y , this effectively removes Y as a parent of X .

Example 4. Consider the abstract TCPT in Figure 4. In this example, learning might have
begun with

RefineSplit (Hybrid,FuelEfficiency,l1),

then applied

LEARNING STRUCTURED BAYESIAN NETWORKS 13

FIGURE 6. Clustering algorithm for deriving AVHs from training data.

RefineSplit (Model,FuelEfficiency,l2)

(where l2 is the leaf in the context with hybrid = no), and finally applied

RefineSplit (Model,FuelEfficiency,l4)

(where l4 is the context with hybrid = no and model = sedan).

7. GENERATING AVHS USING AGGLOMERATIVE CLUSTERING

Agglomerative clustering methods can easily be used to construct AVHs, because the it-
erative process of grouping (agglomerating) clusters intrinsically corresponds to a bottom-up
hierarchy construction process.6 Therefore, we have developed two agglomerative clustering-
based methods—global clustering and local clustering—for deriving AVHs from the training
data used to build the BN. Global clustering uses all of the training data to derive a single
AVH for each variable. Local clustering builds AVHs based only on the BN neighborhood
for each variable, which can change during search, and builds a different AVH for each local
neighborhood. One way to view the AVH construction is as the introduction of new hidden
variables; we discuss that connection in Section 9.

7.1. Global Clustering

Given a set of instances D, our goal is to find a hierarchical clustering of the values
(HXi) for each variable Xi . We begin by constructing ri clusters; each cluster contains all
of the instances d j that have a particular value vik for Xi . C = {C1, C2, . . . , Cri }, where
Ck = {d j | xi j = vik}. These correspond to the initial “leaf clusters.”

The BuildAVH procedure shown in Figure 6 uses hierarchical agglomerative clustering
(Jain, Murty, and Flynn 1999) to iteratively merge pairs of clusters. (After creating the initial
clusters, the variable Xi is ignored in computing the distances.) The resulting AVH will be a
binary hierarchy, because the merging step always combines two clusters.

Because our data sets contain only unordered categorical variables, we cannot use the
mean or median to compute the centroid (average) of a cluster. Therefore, we use the mode
(most frequently occurring value) of each variable. Similarly, there is no notion of the “dis-
tance” between any pair of values for given variable. Therefore, distance measures such
as Euclidean or Manhattan distance cannot be used. Instead, we use Hamming distance to
measure the distance between two cluster centroids for the merging step.

6Other popular clustering approaches, such as K-means or spectral clustering, could be used recursively to repeatedly split
a set of values into a hierarchy, but they are not designed for this purpose. Similarly, other agglomerative clustering methods
could be applied, but the straightforward algorithm we use here seems to work well in practice, as seen in the experimental
results.

14 COMPUTATIONAL INTELLIGENCE

The Hamming distance between two instances di and d j is simply the number of positions
(variables) for which the values differ in the two instances:

Dist (di , d j) =
n∑

l=1

diff (dil, djl) (17)

where

diff (dil, djl) =
{

0 if dil = djl

1 otherwise.
(18)

The distance Dist(Cp, Cq) is defined to be the Hamming distance between the centroids of
the clusters, Cp and Cq .

7.2. Local Clustering

In local clustering, each time a new edge is added to the network, the AVH associated
with the parent node is recalculated for that particular context. Only the child node and the
other parents of the child are used in the clustering process. As a result, a node may have a
different AVH in the CPT of each node for which it is a parent. The same BuildAVH algorithm
is used here as for global clustering (Figure 6). The only difference is that the representation
of the clusters Cp has fewer than n variables (specifically, the node itself, its new child, and
the parents of the new child).

In ABS, the local clusters can be computed either “one-time” or “frequently.” In “one-
time” clustering, A(Y : X) is learned only once, when Y is added as a parent of X . If other
parents are later added, then Y ’s AVH will not change. Note that this means the resulting
clustering is very order-sensitive, because it is entirely determined by the local context when
the first parent is added. In theory, the first parent should be the most “influential” parent,
so the AVHs may in fact capture the most important distinctions. However, to explore the
sensitivity of the clustering to the this ordering effect, we also implemented “frequent”
clustering, in which all parents’ AVHs are recomputed every time the local context (i.e., X ’s
parents) changes.

With TCPT learning, a node’s AVH is learned only when the node is added to the TCPT
for the first time. (Otherwise, the TCPT would need to be recalculated from scratch every time
one of the AVHs change, and we would no longer have an incremental algorithm.) Initially,
when the TCPT does not contain any nodes, and a new parent, Y is being added to Xi , only
the variable Xi is taken into consideration when constructing the AVH of Y . When the TCPT
does contain other nodes Z, when Y is initially added to Xi , Y ’s AVH is constructed, based
on Z and Xi values.

8. EXPERIMENTAL RESULTS

In this section, we describe results of experiments on three real-world data sets from
the UC Irvine Machine Learning Repository (Hettich, Blake, and Merz 1998): Mushroom,
Nursery, and U.S. Census (ADULT).

8.1. Data Sets

Because our research represents one of the first attempts to handle many-valued nominal
variables, most existing data sets have been manually constructed to include only a small

LEARNING STRUCTURED BAYESIAN NETWORKS 15

FIGURE 7. AVH for the Age variable of the Adult data set.

FIGURE 8. AVH for the Work Class variable of the Adult data set.

number of values for nominal variables. Such domains do not benefit significantly from the
addition of AVHs, because the number of distinctions that can be made is already small. We
use three data sets from the UC Irvine repository that have nominal variables with varying
domain sizes.7

The Nursery data set (12,960 instances) has nine nominal variables, six of which have
associated expert-provided AVHs. These AVHs are the shallowest of the data sets that we
tested. Most of the AVHs have depth two, with a maximum branching factor of three.

The Mushroom data set (5644 instances) has 23 variables, 17 of which have associated
expert-provided AVHs. This data set also has very shallow AVHs, but some variables have a
higher branching factor (up to five).

The ADULT data set (45,222 instances), which is derived from U.S. Census data, has 13
variables (four continuous and nine nominal). We discretized the continuous variables, and
created AVHs by hand for nine of the variables; these AVHs have depth 2 or 3, and a typical
average branching factor of around 3. Figures 7 and 8 show the “expert” AVHs for the Age
and Work Class variables, respectively.

We also generated data-derived AVHs using the clustering techniques described in Sec-
tion 7. Because these AVHs are binary trees, they are generally much deeper than the expert-
provided AVHs.

7Note that although these data sets are often used for supervised learning (classification), we are using them for density
estimation, and therefore do not give our results in terms of precision (classification accuracy).

16 COMPUTATIONAL INTELLIGENCE

8.2. Experiments

We compared eight different learning algorithms:

� FLAT: Hill-climbing with “flat” CPTs—i.e., without abstraction or TCPTs
� ABS-E: ABS using expert-provided AVHs
� ABS-G: ABS using global clustering to learn the AVHs
� ABS-L1: ABS using “one-time” local clustering
� ABS-Lf: ABS using “frequent” local clustering
� TCPT: TCPT learning
� TABS-E: TABS with expert-provided AVHs
� TABS-G: TABS using global clustering to learn the AVHs
� TABS-L: TABS using (“one-time”) local clustering to learn the AVHs

Fivefold cross-validation was used to estimate performance. For each fold, the data set was
randomly divided into two parts: 80% training data and 20% test data. Each algorithm was then
run five times on the training data, starting with a different random network. From these five,
the network with the best MDL score on the training data was retained. The five networks thus
obtained were evaluated on their respective test data. Because we are interested in measuring
how well the learned BNs correspond to the joint probability distribution on the test data, we
use log likelihood as our accuracy measure. Log likelihood will be maximized for test data
that is highly probable, given the BN. The results reported below are the average of these
five evaluations. In addition, we are interested in whether the learned BNs are qualitatively
different in terms of complexity for the different algorithms, so we also measure the number
of parameters and edges in the learned BNs.

8.3. Discussion

Table 1 shows the average log likelihood and standard deviations for all of the experi-
ments. (Log likelihoods of smaller magnitude indicate a better fit to the data.) TCPT learning
consistently yields better log likelihood than FLAT. In general, the use of expert AVHs does
not significantly change the log likelihood scores in either direction, whether TCPTs are
used or not. Data-derived AVHs do sometimes yield improvement for non-TCPT ABS learn-
ing. However, none of these variations reach even the performance of basic TCPT learning,

TABLE 1. Average Log Likelihood on the Three Data Sets, with Standard Deviations

Log Likelihood Score

Nursery Mushroom Adult

FLAT −21769 ±1.6 −8680.2 ±5.6 −86740 ±105.5
ABS-E −21770 ±3.7 −8683.4 ±8.2 −86741 ±138.9
ABS-G −21762 ±29.0 −8668.8 ±8.0 −84058 ±152.2
ABS-L1 −21846 ±40.8 −8671.0 ±28.2 −86770 ±66.3
ABS-Lf −21827 ±24.6 −8644.2 ±18.2 −86552 ±139.3

TCPT −21736 ±1.6 −8594.5 ±22.6 −86180 ±21.9
TABS-E −21735 ±2.9 −8557.0 ±15.6 −86165 ±24.4
TABS-G −21634 ±24.1 −8610.4 ±11.7 −83670 ±105.2
TABS-L −19957 ±12.4 −7839.3 ±26.4 −80996 ±342.9

LEARNING STRUCTURED BAYESIAN NETWORKS 17

TABLE 2. Average Number of Parameters and Edges for Learned BNs

Nursery Mushroom Adult

Params Edges Params Edges Params Edges

FLAT 272.0 11.9 2280.2 43.3 2991.4 22.3
ABS-E 263.6 12.2 2114.8 45.1 2729.6 23.9
ABS-G 234.6 12.6 2446.2 44.9 2496.6 22.1
ABS-L1 251.2 20.1 2363.6 45.82 2884.8 25.0
ABS-Lf 280.7 21.7 2496.2 49.3 3045.3 29.3

TCPT 369.4 29.3 1838.2 75.3 2591.2 44.6
TABS-E 286.6 32.0 1304.2 89.2 3236.6 52.8
TABS-G 182.2 29.4 915.4 106.4 1763.4 49.9
TABS-L 161.5 26.4 891.8 103.6 1848.0 47.2

with one exception (Adult with ABS-G (global clustering)). There is no consistent pattern
for which of the AVHs is the best: on Nursery and Adult, the global AVHs give the best
performance; on Mushroom, the frequent local AVHs are best.

TCPT-E (TCPT learning with expert AVHs) gives mixed results: sometimes it performs
slightly better than not using AVHs; sometimes it performs slightly worse.

TABS-L (TCPT learning with local clustering of AVHs) gives by far the best performance,
across all three data sets. This is true even in the case of the Mushroom data set, which has
fairly small domain sizes, and therefore yields relatively shallow AVHs. We conclude that
learning local AVHs in conjuction with the use of TCPT learning is a highly effective learning
method for categorical domains, in terms of accuracy.

Table 2 shows the average number of parameters and average number of edges in the
learned BNs. For all variations and all data sets, the BNs learned by TCPT have more edges,
on average, than those learned by FLAT. Similarly, ABS and TABS nearly always result
in BNs with more edges than FLAT and TCPT, respectively (although in some cases, the
increase is small). Given this observation, one would expect these more structurally complex
BNs to require more parameters. However, in most cases, the resulting networks have fewer
parameters. The most notable exception is ABS-Lf, which results in more edges, but uses
significantly more parameters as well. Other exceptions include all of the ABS-based methods
on the mushroom data set and TABS-E on the Adult domain, which all result in BNs with
more edges but also somewhat more parameters.

The most important result is that TABS-L consistently and significantly decreases the
number of parameters in all three domains, with an average compression ratio of 1.95 across
the three domains. The BNs learned by TABS-L also have more edges than TCPT in two
of the domains, and nearly as many edges as TCPT in the third (Nursery). Interestingly, in
the Nursery domain, the TCPT BN has more parameters than FLAT (most likely because of
the additional edges introduced by TCPT learning), so the TABS-L BN (with a compression
ratio of 1.68 relative to FLAT, and 2.29 relative to TCPT) in some sense represents the best
of both worlds.

Figure 9 and Table 3 show learning performance on different training set sizes in the Adult
domain.8 TABS-L consistently gives the best performance, down to 20% of the original data

8These experiments were run separately from those described earlier, with different random folds, so the results on the
full data set are different.

18 COMPUTATIONAL INTELLIGENCE

FIGURE 9. Log likelihood of learned BNs for Adult domain, for different training set sizes.

set (7200 instances, the smallest training set size that we tested), and TABS-G is consistently
better than TABS. Interestingly, although TABS-E does not outperform TABS significantly
on the full data set, it does yield statistically significantly better performance for small training
set sizes. One can interpret this result as indicating that given enough data, expert hierarchies
are not useful, but with less data, they provide valuable background information.

Figures 11 and 10 and Table 4 show the average number of parameters and edges for
varying training set sizes. Not surprisingly, more data results in more edges and more param-
eters for any given algorithm. TABS-L consistently yields BNs with the fewest parameters
of any algorithm. It always results in more edges than TCPT, and all three TABS algorithms
yield a similar number of edges. However, TABS-E, which results in slightly more edges
than the other two, also consistently uses many more parameters. TABS-G is nearly as good
as TABS-L, but consistently uses more parameters (although not as many as TABS-E).

TABLE 3. Average Log Likelihood Scores on Adult for Different
Training Set Sizes

Log Likelihood Score

Training Set TCPT TABS-E TABS-G TABS-L

7200 −86765.8 −86268.6 −83601.6 −80765.8
14400 −86679.6 −86187.8 −83555.6 −80679.6
21600 −86655.3 −86184.2 −83496.9 −80636.2
28800 −86536.2 −86170.7 −83474.2 −80625.3
36000 −86213.3 −86167.3 −83437.1 −80593.3

LEARNING STRUCTURED BAYESIAN NETWORKS 19

FIGURE 10. Number of edges in learned BNs for Adult domain, for different training set sizes.

FIGURE 11. Number of parameters in learned BNs for Adult domain, for different training set sizes.

The variations in the performance of different AVHs warrants further investigation into
the problem of how to determine the best AVH for a given learning problem. However, we
can conclude that TABS with local clustering is consistently the best approach across all
three metrics: log likelihood, number of edges, and number of parameters.

20 COMPUTATIONAL INTELLIGENCE

TABLE 4. Average Number of Parameters and Edges on Adult for Different Training Set Sizes

TCPT TABS-E TABS-G TABS-L

Params Edges Params Edges Params Edges Params Edges

7200 1235.6 26.6 1234.6 33.2 878.2 36.0 770.2 34.8
14400 1448.0 34.8 1881.4 46.0 1246.8 45.0 1227.6 45.4
21600 1800.4 40.0 2606.2 50.2 1502.6 49.0 1408.8 49.4
28800 1924.2 41.2 2976.2 51.0 1775.2 50.1 1672.2 50.6
36000 2595.0 43.4 3414.8 54.2 1889.8 53.3 1755.6 52.6

9. RELATED WORK

Zhang and Honavar have presented methods for using AVHs to learn decision trees (Zhang
and Honavar 2003) and naive Bayes models (Zhang and Honavar 2004). Their decision
tree learning method has some similarities to our TCPT construction process, in that it
maintains local contexts at each tree node, and always uses the “most abstract” split available
at a given point in the tree. However, their scoring method is based on information gain
rather than an MDL score, and is applied to classification problems rather than more general
probability estimation. Zhang and Honavar allow the data to be represented with partially
specified variable values—that is, a variable can take on any value in the AVH, not just
leaf values. They impute leaf values probabilistically, based on global frequency counts.
Our work could potentially be extended to permit partially specified values using a similar
method. Alternatively, one might wish to use local frequency counts instead (i.e., impute
values based on context-dependent counts), or to explicitly use “fractional instances” rather
than imputing a single value to each partially specified variable.

Kang et al. (2004) give a method for generating AVHs using a hierarchical agglomer-
ative clustering approach. However, because they are focused on pure classification tasks,
the similarity measure for merging clusters is based only on the class distributions of the
instances associated with a given group of values. (They use Jensen-Shannon divergence on
these distributions to measure distance, although they point out that many other divergence
measures are possible.) In contrast, we use a measure of distance in attribute space, making
our similarity measure appropriate for non-classification (probability estimation) tasks.

Sharma and Poole (2003) have developed efficient methods for inference in BNs con-
taining CPTs that are represented as decision trees or decision graphs, in which the decision
(splitting) criteria can use intensional functions (procedural calls) to group values. Although
we do not focus on inference in our work, this method could be applied to perform inference
with our AVH-derived, extensional value groupings.

Previous methods for learning TCPTs typically allow each split in the tree to be either
a full split (which includes a branch for each of the associated variable’s values) or a binary
split (which includes one branch for a selected value, and groups the remaining values into
a second branch). The binary split is a type of naive abstraction—but this abstraction is
purely local (i.e., it does not take into account expert-provided knowledge or global knowl-
edge about the similarity of attribute values), and is costly in terms of the number of possible
abstractions that must be tested. Although we have focused on TCPTs in this paper, other vari-
ations of context-specific independence representations, such as decision graphs (Chickering
et al. 1997) and decision tables (Friedman and Goldszmidt 1996) could also benefit from
AVHs. In effect, AVHs provide additional knowledge—either from an expert in the case of
expert-provided AVHs, or from the entire data set in the case of data-derived data—that can
be used to identify groups of values that are likely to behave similarly.

LEARNING STRUCTURED BAYESIAN NETWORKS 21

The agglomerative clustering for the construction of AVHs is a form of hidden variable
introduction. While there has been some work on learning Bayesian networks with hidden
variables (notably Friedman 1997), it is still an area that has many interesting open research
problems. Some of the approaches to learning hidden variables involve a form of clustering;
for example, module networks (Segal et al. 2005) cluster random variables into modules where
all of the random variables in a module have the same CPTs. Burge and Lane (2006) describe
an approach that uses aggregation hierarchies to structure the search space for learning a
BN. In the latter work, the hierarchies are formed by grouping variables in the Bayes net
together to form a hierarchical Bayesian network (Gyftodimos and Flach 2002). Hierarchical
Bayesian networks allow one to group together probabilistically related variables of a single
instance; this work is complementary to our work on grouping together values of a single
variable that behave similarly across instances.

Boullé (2005) described a method for value grouping for categorical attributes in naive
Bayes classification. This method selects a Bayes-optimal grouping by measuring the dis-
criminatory value of sets of attribute values with respect to the class variable. Similarly, Kass
(1980) uses a chi-square test to iteratively group values that are “similar” (with respect to the
class variable) in decision tree learning. Neither of these approaches consider the possibility
of changing the grouping dynamically during learning, and the resulting groupings are not
hierarchical (although a binary AVH could be generated by recording the sequence of value
groupings). The groupings are also specific to the class variable, so the method is not ap-
propriate for more general density estimation problems. However, either of these grouping
methods could potentially be adapted for use in the local clustering step of our algorithm, by
applying them iteratively to construct a hierarchy for the local context.

10. CONCLUSIONS AND FUTURE WORK

We have presented ABS, which uses AVHs in learning BNs, and TABS, an extension to
ABS that integrates AVHs with TCPTs. We also described two clustering-based algorithms
for constructing AVHs from the training data used for learning a BN: a global method
that uses all of the data, and a local method that uses only the local structure in the BN
to learn each AVH. We showed that the use of AVHs significantly reduces the number of
parameters required to represent the learned BN; in particular, TABS with locally clustered
AVHs consistently yields BNs with the fewest parameters.

In future work, we plan to investigate variations to the tree-learning algorithm and to the
clustering techniques for deriving AVHs, including non-binary agglomerative clustering. We
also plan to extend our learning methods to permit partially specified (abstract) values in the
data, and to support a decision graph representation of local structure.

ACKNOWLEDGMENTS

Thanks to Jun Zhang of Iowa State University for providing the AVHs for Nursery and
Mushroom data sets. This work was partially funded by NSF #0325329 and NSF #0423845.
Student support was also provided by the NSF ADVANCE Program at the University of
Maryland, Baltimore County (UMBC), grant number SBE0244880.

REFERENCES

BOUCKAERT, R. R. 1994. Probabilistic Network Construction using the Minimum Description Length Principle.
Technical Report RUU-CS-94-27, Utrecht University.

22 COMPUTATIONAL INTELLIGENCE

BOULLÉ, M. 2005. A Bayes optimal approach for partitioning the values of categorical attributes. Journal of
Artificial Intelligence Research, 6:1431–1452.

BOUTILIER, C., N. FRIEDMAN, M. GOLDSZMIDT, and D. KOLLER. 1996. Context-specific independence in Bayesian
networks. In Proceedings of UAI-96, pp. 115–123.

BURGE, J., and T. LANE. 2006. Improving Bayesian network structure search with random variable aggregation
hierarchies. In Proceedings of the European Conference on Machine Learning, Vol. LNAI 4212. Edited by
J. Furnkranz, T. Scheffer, and M. Spiliopoulou. Springer-Verlag, Berlin, Heidelberg, pp. 66–77.

CHICKERING, D. M., D. GEIGER, and D. HECKERMAN. 1994. Learning Bayesian Networks is NP-Hard. Technical
Report MSR-TR-94-17, Microsoft Research.

CHICKERING, D. M., D. HECKERMAN, and C. MEEK. 1997. A Bayesian approach to learning Bayesian networks
with local structure. In Proceedings of UAI-97. Morgan Kaufmann Publishers, San Francisco, CA, pp. 80–89.

COOPER, G. F., and E. HERSKOVITS. 1992. A Bayesian method for the induction of probabilistic networks from
data. Machine Learning, 9(4):309–347.

DESJARDINS, M., L. GETOOR, and D. KOLLER. 2000. Using feature hierarchies in Bayesian network learning. In
Proc. of SARA ’02. Springer-Verlag, pp. 260–276.

DESJARDINS, M., L. GETOOR, and P. RATHOD. 2005. Bayesian network learning with abstraction hierarchies
and context-specific independence. In Proceedings of the 16th European Conference on Machine Learning
(ECML-2005).

FRIEDMAN, N. 1997. Learning belief networks in the presence of missing values and hidden variables. In Inter-
national Conference on Machine Learning, pp. 125–133.

FRIEDMAN, N., and M. GOLDSZMIDT. 1996. Learning Bayesian networks with local structure. In Proceedings of
UAI-96. Morgan Kaufmann Publishers, San Francisco, CA, pp. 252–262.

FRIEDMAN, N., and Z. YAKHINI. 1996. On the sample complexity of learning bayesian networks. In Proc. Twelfth
Conf. on Uncertainty in Artificial Intelligence.

GYFTODIMOS, E., and PETER A. FLACH. 2002. Hierarchical Bayesian networks: A probabilistic reasoning model
for structured domains. In Proceedings of the Nineteenth International Conference on Machine Learning
(ICML-2002).

HECKERMAN, D. 1995. A Tutorial on Learning Bayesian Networks. Technical Report MSR-TR-95-06, Microsoft
Research.

HETTICH, S., C. L. BLAKE, and C. J. MERZ. 1998. UCI machine learning repository.

JAIN, A. K., M. N. MURTY, and P. J. FLYNN. 1999. Data clustering: A review. ACM Computing Surveys, 31(3):263–
323.

KANG, D.-K., A. SILVESCU, J. ZHANG, and V. HONAVAR. 2004. Generation of attribute value taxonomies from
data for data-driven construction of accurate and compact classifiers. In Proceedings of ICDM-04.

KASS, G. V. 1980. An exploratory technique for investigating large quantities of categorical data. Applied Statistics,
29(2):119–127.

LAM, W., and F. BACCHUS. 1994. Learning Bayesian belief networks: An approach based on the MDL principle.
Computational Intelligence, 10(3):269–293.

PEARL, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-
mann, San Francisco, CA.

POOLE, D., and N. L. ZHANG. 2003. Exploiting contextual independence in probabilistic inference. Journal of
Artificial Intelligence Research, 18:263–313.

SEGAL, E., DANA PE’ER, AVIV REGEV, DAPHNE KOLLER, and N. FRIEDMAN. 2005. Learning module networks.
Journal of Machine Learning Research, 6:556–588.

SHARMA, R., and D. POOLE. 2003. Efficient inference in large discrete domains. In Proceedings of UAI-03.
Morgan Kaufmann, San Francisco, CA, pp. 535–542.

ZHANG, J., and V. HONAVAR. 2003. Learning decision tree classifiers from attribute value taxonomies and partially
specified data. In Proceedings of ICML-03.

ZHANG, J., and V. HONAVAR. 2004. AVT-NBL: An algorithm for learning compact and accurate naive Bayes
classifiers from attribute value taxonomies and data. In Proceedings of ICDM-04.

