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Abstract

The concept of team formation is central to a wide vari-
ety of disciplines, including planning and learning in multi-
agent systems, artificial social systems, and distributed arti-
ficial intelligence. Typically, models of agent-based systems
do not focus on the nature and structure of the interconnec-
tion network that dictates agent interaction, although recent
findings suggest that real-world networks of many different
types have rich, purposeful, and meaningful structures. Us-
ing a simple agent-based computational model of team for-
mation, our previous work suggests that organizational net-
work structure can have a significant effect on the dynamics
of team formation. We present several strategies for locally
adapting network structure in a simple team formation sce-
nario, and give empirical results that show that such adap-
tation methods are capable of significantly improving orga-
nizational efficiency. These methods prove to be especially
useful for adapting agent networks in the presence of at-
tack faults that target the most highly connected nodes in
the network.

Keywords: team formation, organizational learning, adap-
tation, complex networks.

1. Introduction

In both real and artificial societies, effective organiza-
tions are highly dependent on structures that foster the ef-
ficient formation of teams to accomplish complex tasks.
In many applications of multi-agent systems, agents must
coordinate to solve problems, dynamically distribute re-
sources, and collaborate to achieve collective goals. Team
formation is a core concept for all of these applications.

With the continued growth of the Internet and the tech-
nologies of the Semantic Web [11], agents are required to
operate in expanding and increasingly complex environ-
ments. Agents operating in these domains will be unable to
maintain a working knowledge of all other agents in the do-
main; as a result, the network structure that governs the in-
teractions between agents will play a fundamental role in
the effectiveness of these agent societies.

Recent research on real-world networks has revealed that
social systems have a rich structure [13, 14]. In understand-
ing agent-based team formation, much effort has been de-
voted to the dynamics of individual agents and various algo-
rithms for forming teams, with little focus on the role of in-
teraction topologies. Recent work in computational learning
theory [4, 3], however, highlights the importance of social
structure on organizational performance for various types
of organizational behaviors. Such studies have shown that
clustered organizations, where agents have few connections
but are tightly connected, are more stable than organiza-
tions with high connectivity [12]. Similarly, organizations
with fluid (changeable) groupings are more likely to foster
collaboration [10]. Motivated by these findings, this paper
provides empirical evidence of the importance of network
structure on multi-agent team formation. We also show that
organizational learning through local network adaptation
can drive agent societies toward more efficient structures.

2. The Team Formation Model

In the multi-agent systems community, there has been
a significant amount of research on team formation and
self-organization. Much of the work on team formation fo-
cuses on the mental states of the agents and their willing-
ness to form teams and collaborate [5, 18]. These studies
have driven the development and implementation of frame-



works in which teams coordinate closely to develop and ex-
ecute distributed plans [15, 7].

We present a simple model that emphasizes the dynam-
ics of multi-agent team formation, without the overhead of
detailed negotiations and belief modeling by the individ-
ual agents. Tasks are generated and globally advertised to
the agents in the organization, and agents form teams to ac-
complish the tasks. Each team must consist of a connected
subgraph of agents who possess the necessary skills for that
task, so the network structure restricts agent interaction and
participation on teams.

Teams and Tasks. The organization in the model consists
of N agents, a1, a2, . . . , aN , each situated at a vertex in a
graph. Each agent ai is assigned a single skill, σi ∈ [1,Σ],
where Σ is the organizational skill diversity. In the model,
agents can be in one of three states: uncommitted, commit-
ted, or active. An uncommitted agent is available and not
assigned to any task. A committed agent has chosen a task,
but the full team to work on the task has not yet formed. Fi-
nally, an active agent is a member of a team that has fulfilled
all of the skill requirements for a task and is actively work-
ing on that task.

Tasks are introduced at fixed task introduction intervals,
where the length of the interval between tasks is given
by a parameter, µ. Tasks are globally advertised (i.e., an-
nounced to all agents). Each task T has an associated size
requirement, |T |, and a |T |-dimensional vector of required
skills, RT . The skills required for a given task T are cho-
sen uniformly from [1,Σ]. Each task is advertised for a fi-
nite number of time steps proportional to its size (namely
δ|T |, where δ is a model parameter) to ensure that the re-
sources (i.e., agents) assigned to the tasks are freed if the
full requirements of the task cannot be met. Similarly, teams
that form to fill the requirements of a given task are only ac-
tive for a finite number of time steps (namely α|T |, where
α is a model parameter).

Agent Dynamics. The organizational network structure,
represented by the graph, dictates the collections of agents
that can be on teams together.

Definition: A valid team is a set of agents whose
corresponding set of vertices induce a connected
subgraph and whose collective skill set fulfills the
skill requirements for a given task T .

Given the restriction of teams to connected subgraphs
of the organizational structure, agents must use heuristics
based on localized knowledge to decide which teams to
join. The local knowledge available to an agent includes the
number of positions currently filled on each team, the num-
ber of the agent’s uncommitted immediate neighbors, and
the number of immediate neighbors on each team. Different
heuristics for using this local information to decide which
team to join yield varying model dynamics [9].

3. Network Effects

In our previous work [9], we showed that the network
structure of an organization can have significant effects on
the overall team formation performance. In this work, we
used four different network structures to model different in-
teraction topologies among the agents. The graphs are de-
signed to have a fixed density (i.e., a constant number of
edges for a given graph size).1

• 2-dimensional regular lattice: In this graph, each ver-
tex is connected to exactly four others, as in a typical
spatial agent-based model.

• 2-dimensional small-world network: This net-
work is derived from the 2-dimensional lattice de-
scribed above. The small-world network is formed
by randomly “rewiring” each edge (i.e., chang-
ing one of its vertices to a random vertex) with a
probability p [16, 17]. For all of the experiments be-
low, p = 0.05.

• Random graph: This is the Erdos-Renyi random graph
model [8], where there is an undirected edge between
each pair of vertices with probability ρ. To approx-
imate the density of the lattice and small-world net-
works, ρ = 2/(N − 1).

• Scale-free graph: In this graph model, the graph is it-
eratively grown. As new vertices are added the graph,
they “preferentially” attach to existing vertices that are
highly connected [1]. The resulting graph is a random
structure that has “hub” vertices. To match the density
of the other networks, 2N undirected edges are intro-
duced.

These network structures were chosen because they are well
studied, and because they are reflective of typical agent-
based and real-world networks.

In order to measure collective organizational perfor-
mance, we use the following definition of organizational ef-
ficiency:

efficiency =
# of teams successfully formed

total # of tasks introduced
. (1)

This measure provides a global view of the task completion
rate of the agent society. In our previous work, we studied
how the organizations perform over a range of parameters,
where the agents are embedded in each of the four networks
described above. Each of the graphs has 100 vertices and
200 undirected edges. The experimental results presented

1 Holding the graph density constant allows us to focus only on the
topology of the network. In practice, graphs with higher density may
be more able to form teams, but may also have higher communica-
tion and computational overhead. Determining the ideal density for an
agent society is an interesting problem, but is beyond the scope of this
paper.



are the result of 10 simulations run for 5000 time steps of
the model with δ = 2 and α = 4.
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Figure 1. Organizational efficiency vs. task
introduction interval for the team formation
model with N = 100, |T | = Σ = 10

Figure 1 shows the effect of varying the task introduc-
tion interval on system performance for each of the four
network structures. In this experiment, agents joined teams
using only information about how many positions on the
team are previously filled (i.e., how many agents have pre-
viously committed to a specific team). Each agent sequen-
tially considers joining each of the teams to which one of
its neighbors belongs, in random order. The agent joins the
team with probability

# positions filled on team / team size

If it decides not to join a team, it moves on to consider the
next candidate team, until no options remain. This decision
process is performed at each time step.

Although the scale-free network dominates, there are
several important performance differences among the other
structures. First, in general, the more stochastic network
structures (i.e., the scale-free and the random networks) ap-
pear to consistently outperform the more regular network
structures (i.e., the lattice and the small-world). Second,
within the “regular” graphs, the small-world network (–o–)
outperforms the lattice network structure, despite their high
degree of similarity. In these experiments, the small-world
network was constructed by simply rewiring edges of the
lattice network with a fairly low probability, p = 0.05.
Therefore, 95% of the edges in these two network structures
are identical, yet the small-world network shows a statisti-
cally significant improvement in organizational efficiency
over the lattice structure.

In the other experiments we performed—varying net-
work size, team size, skill diversity, and agent decision

strategies—the results were similar: scale-free networks
dominated, followed by random, small-world, and then lat-
tice network structures.2 Other researchers have found that
similar results hold for the adoption of social conventions in
agent societies [6].

4. Organizational Learning

The results presented above demonstrate that the net-
work structure can have a substantial effect on organiza-
tional performance, and that some network structures con-
sistently outperform others. In considering how to apply this
finding to the implementation of multi-agent systems, the
obvious choice is to use the network structure that performs
the best, but this implies that the designer has knowledge
of all possible network structures. It also ignores the possi-
bility of agent failures, which can lead to a substantial drop
in performance. Scale-free networks, which have nodes of
very high degree, are particularly susceptible to targeted at-
tack faults, as we discuss later. To address these issues, we
propose a set of strategies for network adaptation. The re-
sults we present here suggest that organizational learning
(i.e., improvement in organizational efficiency) can be ac-
complished through localized network adaptation.

Adaptation decisions occur on a local level: when adap-
tation occurs, each agent is responsible for deciding which,
if any, of its incident edges should have its other end moved,
and to which other agent it should be attached. For the sake
of simplicity, in the work presented here, adaptations oc-
cur in a batch scenario, but the results should be applicable
to an online scenario. Since agents decide locally whether
or not to join a forming team, it makes sense to adapt lo-
cally as well.

The performance of nodes and edges is assessed as a
tradeoff between their rate of successfully forming teams
and their rate of joining failed teams. Specifically, each time
a team succeeds, each of its vertices and edges has its per-
formance measure incremented (+1); each time a team fails,
the performance of each of its vertices and edges is decre-
mented (-1).

To study the effectiveness of the adaptation strategies, we
model failures in the simulation environment by construct-
ing faulty graphs. These are created by first constructing a
graph of some network structure, then selecting a subset of
the vertices to be deleted from the graph (along with their
incident edges). The fault rate of a graph is the fraction of
vertices that are removed. We focus on a scenario with at-
tack faults, as introduced by Albert et al. [2]. Such faults
simulate a malicious attack on a network, where the attack-
ers specifically target the most important agents – i.e., those

2 These results will be presented in more detail in a paper in prepara-
tion, to be submitted to the Journal of Artificial Intelligence Research
(JAIR).



with highest degree. This scenario could also be seen as a
more benign “wear-and-tear” situation, where the most con-
nected vertices are more prone to failure simply because of
the inherent added stress and traffic volume. Vertices are se-
lected for deletion by selecting a random edge in the graph
and then deleting one of its incident vertices; as a result,
the probability of a vertex failure is proportional to that ver-
tex’s degree.

4.1. The Adaptation Process

There are two major aspects of each adaptation strategy.
First, a strategy must specify which agents will be allowed
to adapt. The options that we explored for this aspect are:

• Random: Allow a random set of agents to adapt (move
an edge). The number of adaptations NA is given as a
parameter to the system. (In the experiments described
here, NA = N .)

• Team Failure: When a team fails to finish, allow one of
its agents to adapt (move an edge).

• Node Failure: When an agent fails, allow each of its
neighbors to adapt (replace the “lost” edge). This has
the effect of replacing most of the edges lost due to
failure. The only edges which will not be replaced are
those where both incident vertices have failed.

Second, a strategy must define an initial pool of candidate
neighbors for each adapting agent. The options we explored
are:

• All: All agents may be new neighbors

• Teammate: Only ex-teammates may be new neighbors

• Referral: Neighbors of neighbors may be new neigh-
bors

These two aspects yield nine different adaptation strategies,
which cover a wide range of possible scenarios. The realism
and requirements of each will be discussed later, but exam-
ining all of these possibilities should give a sense of which
methods are most promising.

Some of the strategies require prior knowledge regard-
ing teammate and performance histories. This data is col-
lected in a preliminary simulation; adaptation is then per-
formed in a batch step. The performance results in Section 5
are based on the network’s performance in a second simu-
lation following the batch adaptation.

The Random and Team Failure strategies require an in-
cident edge to be deleted before creating a new edge. In
this case, the edge with the worst performance is chosen
for deletion, with ties broken randomly. (In the Node Fail-
ure strategy, edges are replaced when one of their vertices
fails.)

New neighbors are selected through a four-step process
that filters an initial pool of candidates down to a final

new neighbor. Due to space limitations, we briefly sum-
marize these steps here. First, the candidate pool is created
using the current strategy (All, Teammate, or Referral, as
described above), excluding any potential candidates that
are already neighbors. Second, an optional structure filter-
ing may be performed, based on the original network type.
For example, in a lattice graph, the only candidates kept
are those directly above, below, to the left, or to the right,
and having no other vertices in between. Third, a skill fil-
tering step retains only candidates with a skill that is cur-
rently under-represented among the agent and its neighbors.
Finally, a degree filtering step is performed, keeping only
those candidates with the single highest degree. The idea
behind this filter is that a well connected agent is most likely
to have neighbors which could complete a forming team.
This filter primarily serves as a tiebreaker among promis-
ing candidates. If more than one candidate still remains af-
ter this filter, ties are broken randomly.

5. Results and Discussion

Figure 5 shows empirical results for the nine adaptation
strategies. As in Section 3, each of the graphs has 100 ver-
tices and 200 undirected edges. Each point in the graphs is
the average of ten 5000-step simulations with δ = 2 and
α = 4.

Candidate Pool Strategies The “All” candidate generation
strategy performed well, and the “Referral” strategy man-
aged to outperform the unadapted graph by at least a small
margin.

Only the “All” strategy enables an agent to reconnect to
a different (and larger) component of the network, if it be-
comes disconnected as the result of agent failures. Two of
the “Referral” strategies managed to succeed even without
this capability, suggesting that connecting between different
network components is not a critical part of a good strategy.

The “Teammate” strategy did not succeed at all. This is
a little surprising, since the “Teammate” approach seems
very intuitive, and since it allows agents to find more dis-
tant neighbors than the Referral strategy. In the current im-
plementation, teammates are identified by running a simu-
lation after the faults are introduced, but before adaptation.
If the teammate strategy was modified to remember team-
mates from before the failure incident, it might show bet-
ter results, since teammates that ended up in other compo-
nents of the faulty graph would still be available.

Adaptation Source Strategies Of the three strategies for
choosing agents to adapt, the “Team Failure” strategy per-
formed best. The “Random” strategy was fairly successful,
which is interesting because it was performing far fewer
adaptations than the “Team Failure” strategy: the former
performed about 100 adaptations, while the latter performed
about 500. These values were given as parameters (the



number of random adaptations to perform and the teamfail
queue limit). Increasing the amount of random adaptation
could lead to better performance for the random strategies.

The “Node Failure” strategy performed poorly, espe-
cially considering that its resulting graphs can potentially
have many more edges than those from the other strategies.
Perhaps its poor performance could be blamed on the can-
didate pools, since it performed almost as well as the oth-
ers under the “All” strategy. The “Nodefail, All” strategy
has some very unusual behavior, where its performance ac-
tually increases with the fault rate, to a point. This is be-
cause the “Node Failure” strategy only allows neighbors of
a failed vertex to adapt; the extremely low fault rates simply

have too little adaptation to achieve the full benefit. When a
single agent fails, only its neighbors may adapt.

The “Team Failure” strategy has a distinct advantage
over the others, in that it is much more sensitive to the
real performance of the graph, and is able to specifically
target problematic areas. It even performs well on a fault-
free graph, achieving a significant performance gain. In the
“Team Failure” charts, the “Scale-free (w/ Performance)”
data shows a modification of the team failure scheme where
the best performing team member is chosen for adaptation,
rather than a random team member. In general, this variation
performs very well, though it fails when used in conjunction
with the “Teammate” candidate pool strategy. (While the



adaptation mechanisms were being developed, it was ob-
served informally that if the worst performing team mem-
bers are chosen, performance falls near to or below the con-
trol data.)

6. Future Work

Future directions on this work fall into four main cat-
egories: further investigation and data gathering for the
strategies described in this paper; studying adapted network
structures and characteristics; developing new adaptation
methods; and exploring methods for online adaptation.

Gathering additional data and running further experi-
ments would enable us to better explain our results. In par-
ticular, to understand the performance differences between
the adaptation strategies, it would be useful to gather more
statistics about the adaptation process. Data such as the size
of the candidate pool after each filtering step, the number of
adaptations performed, and the distribution of adaptations
among the agents could help indicate why some strategies
outperformed others. We also plan to vary the parameter set-
tings (number of adaptations, size of teammate history list,
etc.) in order to study their influence on the adaptation pro-
cess.

Further analysis of the adapted network structures is war-
ranted. Given that some strategies achieved a performance
gain in a fault-free environment, characterizing those re-
sulting structures could lead to better team formation net-
works in general. Perhaps an optimal network structure for
the team formation environment could be discovered, which
would be an important result with many interdisciplinary
applications.

Many other local adaptation strategies are possible. In
particular, given that many of the current strategies and
mechanisms operate deterministically, it would be interest-
ing to investigate more weighted probabilistic approaches.
For example, the degree filter will eliminate a candidate if
its degree is just one less than the maximum, even if it is a
very good candidate in other aspects. Relaxing this behav-
ior could allow the adaptation mechanism to trade off dif-
ferent factors.

The current implementation takes a “single-shot” ap-
proach to adaptation. We plan to study the application of
similar strategies in an online adaptation scenario, where
the network structure is gradually changed over time.

7. Conclusions

We have shown that network structures can have a sig-
nificant effect on organizational team formation in a society
of agents. These results support the conclusion that the in-
teraction topology should be a consideration in the design

and function of multi-agent systems, especially those that
are embedded in large and expanding domains.

Our empirical results showed that organizational effi-
ciency can be improved by allowing agents to adapt their
local interactions. Although many avenues remain to be ex-
plored, we believe that our initial results point the way to
many interesting opportunities for future work in this area.
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