
PASSAT: A User-centric Planning Framework

Karen L. Myers1 W. Mabry Tyson1 Michael J. Wolverton1
Peter A. Jarvis1 Thomas J. Lee1 Marie desJardins2

1 Artificial Intelligence Center
SRI International

333 Ravenswood Avenue
Menlo Park, California 94025

{myers,tyson,mjw,jarvis,tomlee}@ai.sri.com

2 University of Maryland, Baltimore County
Dept. of CS and EE
1000 Hilltop Circle

Baltimore, MD 21250
mariedj@cs.umbc.edu

Abstract

We describe a plan-authoring system called PASSAT (Plan-
Authoring System based on Sketches, Advice, and
Templates) that combines interactive tools for constructing
plans with a suite of automated and mixed-initiative
capabilities designed to complement human planning skills.
PASSAT is organized around a library of predefined
templates that encode task networks describing standard
operating procedures and previous cases. Users can select
from these templates to apply during plan development,
with the system providing various forms of automated
assistance. A mixed-initiative plan sketch facility helps
users refine outlines for plans to complete solutions, by
detecting problems and proposing possible fixes. An advice
capability enables user specification of high-level guidelines
for plans that the system helps to enforce. Finally, PASSAT
includes process facilitation mechanisms designed to help a
user track and manage outstanding planning tasks and
information requirements, as a means of improving the
efficiency and effectiveness of the planning process.
PASSAT is designed for applications for which a core of
planning knowledge can be captured in predefined action
models but where significant user control of the planning
process is required.

Introduction
AI planning technology provides powerful tools for solving
problems that require the coordination of actions in the
pursuit of specified goals. To date, however, there has
been limited success in transitioning this technology to
significant applications in the commercial, military, or
space sectors. A major obstacle to technology transfer lies
with the lack of control available to potential users of
planning systems. AI planning systems have traditionally
been designed to operate as black boxes: they take a
description of a domain and a set of goals and
automatically synthesize a plan for achieving the goals.
Human planners, however, are generally reluctant to cede
full control to automated planning systems in this manner.
 Many potential consumers of planning technology
require more user-centric tools that are designed to
augment human skills rather than replace them. This
observation has led, in recent years, to the development of

a number of plan-authoring frameworks. Plan-authoring
systems provide a set of plan editing and manipulation
capabilities that support users in developing plans. These
systems introduce a degree of structure to the planning
process, yielding principled representations of plans with
well-defined semantics. Plan-authoring systems can
include a range of planning aids that reason over this
structure; however, the role of such automated aids is to
augment human planning skills by facilitating human-
driven plan development. Interest in plan-authoring
systems is strong within both the space and military sectors,
for their potential to improve the quality and process of
plan development without incurring the high knowledge
modeling costs and loss of control associated with fully
automated planning systems.
 This paper describes a plan-authoring system called
PASSAT (Plan-Authoring System based on Sketches,
Advice, and Templates) designed to support user-centric
planning. At its heart, PASSAT is a plan-authoring system
in which users construct and modify plans interactively.
Users can draw upon a library of templates, to the extent
they desire, to assist with plan development. Templates
correspond to a form of hierarchical task network (HTN)
[Tate, 1977], and may encode both parameterized standard
operating procedures and cases corresponding to actual or
notional plans developed for related tasks.
 To complement these interactive tools, PASSAT
includes a range of automated and mixed-initiative
planning capabilities. Users can invoke an automated
planning mode based on standard HTN methods to expand
any open task within a plan. A plan sketch facility enables
users to create outlines of plans that are then filled out
using templates designed for similar tasks. Advice within
PASSAT enables users to define high-level policies to be
satisfied by both plans and planning processes. Such
guidance can be useful both in directing automated
components within the system, and in tracking high-level
guidelines that a user wants satisfied but may inadvertently
violate through his interactive planning choices.
 PASSAT also includes process facilitation mechanisms
designed to aid the user in managing plan development.
These mechanisms help the user track open tasks and

 2

outstanding information requirements for the current plan.
Such assistance is critical in complex applications, as it
helps the user stay focused without overlooking important
details.
 With its combination of interactive and automated
capabilities, PASSAT enables a user to quickly develop
plans that draw upon past experience encoded in templates
but are customized to his individual preferences and the
demands of the current situation. PASSAT has been under
development for about a year. This paper describes both
the current PASSAT system and the more comprehensive
plan-authoring system toward which we are working (with
all future work noted explicitly as such). We begin with a
more detailed discussion of PASSAT and an example of its
use, followed by a description of the representational
constructs within PASSAT, the user-centric planning
capabilities, and the process facilitation mechanisms. The
final section discusses related work.

PASSAT Overview
Plan development within PASSAT has been guided by two
key principles:

• Flexible, ‘out of the box’ planning: Traditional
AI planning systems lock users into a set of
solutions, namely, those implied by the predefined
action models that underlie plan development.
Within PASSAT, templates are viewed as
guidelines for performing tasks; the human
planner is free to expand the set of solutions
defined by the templates. In particular, a user can
override constraints, drop tasks, or insert
additional tasks in accord with his personal
preferences or the demands of the current
situation. Such flexibility is critical for domains
in which correct and comprehensive collections of
templates cannot be provided.

• Controllable user-centric automation: Automated
capabilities within PASSAT are designed both to
complement human planning skills and to be
readily directable by a human. Automation would
be invoked under user control only in contexts
where he feels that it would be beneficial.

Domain Characteristics
PASSAT is generic, domain-independent technology but is
tailored toward applications with the following
characteristics.

(a) The complexity of the domain precludes full capture

of all relevant planning knowledge. However, partial
planning models can be developed.

(b) Human input is critical, but some amount of

automation would both improve plan quality and
reduce overall planning time.

 Our motivating application domain, Special Operations
Forces (SOF) mission planning, has these characteristics.
Standard operating procedures exist for many high- and
mid-level activities in the SOF domain, and are readily
amenable to encoding within an HTN representation. For
example, a hostage rescue operation can be characterized
as consisting of the high-level objectives of performing
reconnaissance in the areas around the rescue site,
establishing a safe haven to which to remove the hostages,
undertaking the assault to rescue the hostages, and
transporting the hostages to the safe haven. Low-level
operations follow standard doctrine and can also be
modeled in a relatively straightforward manner.1
Intermediate strategy decisions pose a bigger challenge.
For example, informed selection of areas and methods for
reconnaissance requires deep background knowledge of
reconnaissance operations, breadth of understanding of the
current situation, and significant experience. Capturing and
modeling this type of strategic knowledge in full presents a
tremendous challenge.

SOF planning lies well beyond the range of current
automated planning technologies; moreover, fully
automated solutions are unlikely ever to succeed because of
the difficulty in formulating strategic knowledge with
sufficient fidelity. In contrast, a PASSAT-style plan-
authoring system provides a good technological match for
the SOF planning domain. Missions arise unexpectedly,
resulting in a need to assemble high-quality plans rapidly.
Thus, the availability of tools to expedite plan development
is important. Because many types of SOF operations can
be broadly characterized with predefined templates,
knowledge bases can be developed that capture certain
portions of the planning process. However, individual
operations tend to be highly distinctive, making it
important to have tools that enable users to modify and
customize plans to suit the needs of a particular situation.
 Many potential application domains for planning
technology share these characteristics of having partially
formalizable domain knowledge and requiring significant
user input to produce high-quality, situation-specific plans.
On the military side, examples include air operations,
disaster relief planning, and noncombatant evacuation
operations. Space applications include science mission
planning and ground operations planning.

PASSAT Example
Figure 1 shows a snapshot of the PASSAT interface during
a planning session. The large frame on the left contains a
hierarchical decomposition of the current partial plan.
Items next to folder icons are tasks that have been
expanded; items next to star icons are tasks that can be
expanded further (either through automated template
application or interactively); and items next to document

1 Many of our templates were derived directly from SOF
field manuals.

icons are tasks that match no templates. The frame on the
upper right shows the current agenda – the list of planning
steps the user must perform to address outstanding issues.
The frame on the lower right shows the list of information
requirements – sources of information that have been
identified by the user or PASSAT's planning knowledge as
relevant to various portions of the planning process.
 The human planner develops the plan by selecting a
planning step from the agenda and performing that step
(many of these planning steps are accessible through the
plan display as well). If the planning step is to expand the
PROVIDE-CSAR-COVERAGE task, for example, the
planner would be presented with several options: apply one
of the templates that matches the task (see Figure 2), enter
an expansion manually, or create a sketch for achieving
the PROVIDE-CSAR-COVERAGE task and work with
PASSAT to refine that sketch. Performing this planning
step may cause additional planning steps to be added to the
agenda (i.e., new tasks, variables, and constraints may have
been introduced into the plan) and new information
requirements as well.

Plan Representation
PASSAT's representation of plans and tasks is based on a
fairly standard HTN model (similar to that of [Erol et al.,
1994]), augmented with a rich temporal representation for
tasks. Using PASSAT, a user would describe the objective
of the plan in the form of one or more task statements,
each consisting of a task operator and terms (variables,
instances, or functions applied to terms).

Templates A template describes one way that a task (i.e.,
the template’s purpose) can be decomposed into subtasks.
A template consists of a set of these subtasks, as well the
variables used in the template, constraints on the
applicability of the template, and the effects of successfully
performing individual tasks and the entire template.
Different templates may describe different decompositions
for the same task.

Figure 1. PASSAT Interface during Plan Development

 4

 PASSAT’s template representation supports two features
not found in the framework of [Erol et al. 1994], namely
information requirements (discussed in detail below) and
enumeration tasks. Enumeration tasks enable the
specification of a set of tasks relative to a set of terms that
satisfy a designed predicate. For example, the enumeration
task

∀ ?city.DISTANCE(?city,?hostage-locn)<20

� RECON(?city)

indicates that a RECON task should be performed for each
city within the specified distance. Other HTN frameworks
(e.g., O-Plan [Currie and Tate, 1991] and SIPE-2 [Wilkins
1993]) provide similar mechanisms for enumerating
subtasks relative to a designated constraint.

Constraints Constraints consist of state predicates that
denote hard or soft conditions, perhaps due to physical
laws or policy rules. PASSAT employs a three-valued
logic for constraints, grounded in the values TRUE,
FALSE, and UNKNOWN.
 Automated constraint checking is performed when
constraints are created or modified in the plan. Checking
of ground constraints may return a status of UNKNOWN, if
the information is not specified in the world state; such
constraints would need to be validated explicitly by the
user. Checking of nonground constraints occurs only when
the number of possible instantiations is less than a
predefined threshold, with the system testing whether the
constraint is valid or invalid for each (i.e., establishing that
the constraint is necessarily true or false independent of the
instantiation). Otherwise, the system returns UNKNOWN
and the constraint is rechecked when more variables are
instantiated.
 Unlike in automated planning systems, a constraint with
value other than TRUE does not necessarily halt the process
or cause backtracking. Instead, a violated constraint is
called to the attention of the user, who has the choice of
ignoring the violation or changing the step that triggered
the violation.

Temporal Representation PASSAT supports the
scheduling of tasks via constraints on the earliest and latest
possible times for the start and end points of tasks.
Temporal constraints typically refer to these end points but
may also refer to upper and lower bounds on those time
points. Temporal constraints can also be expressed using
Allen’s interval relations [(Allen, 1984)].1

Domain Definition PASSAT utilizes a number of
coordinated databases to define its application domain. An
ontology (based on the Generic Frame Protocol
representation [Karp et al., 1995]) defines the hierarchical
organization of classes and instances and their properties.
State predicate and task statements are declared, specifying
the number and classes of their arguments. Functions are
similarly declared, with the additional declaration of the
class of the function's value. Some predicates and
functions are computable (e.g., <, +, and Distance)
while others are defined by their extent. The world state is
defined by a set of ground state predicates.

User-centric Plan Development
PASSAT currently provides two main modes of plan
development: interactive plan refinement and plan
sketching. Future versions of PASSAT will also support
an advice module to guide plan development.

1 The temporal reasoning portion of the system is not yet
fully implemented.

Figure 2. A Candidate Template for Task Refinement

Interactive Plan Refinement
Interactive plan refinement in PASSAT involves three
types of planning step: expand task, instantiate variable,
and resolve constraint.

Expand Task When a task is to be expanded, the system
offers the user the choice of applying a predefined
template, specifying a set of subtasks interactively,
sketching a solution (see below), or dropping the task.
 When the user chooses a template to apply, the system
first unifies the task and the template's purpose, making
appropriate substitutions throughout the template.
PASSAT adds the (partially instantiated) subtasks and
constraints of the template to the plan. In addition, it
extends the agenda to include planning steps to expand the
new subtasks, to check the new constraints, and to
instantiate any unbound variables from the template. The
planning step for the parent task is marked as completed
and removed from the agenda. In the displayed plan, the
parent task is shown with its subtasks.
 As the system performs this step, it also checks the status
of all new constraints. If one is found to be valid, the
planning step to check it is marked as completed and
removed from the agenda. If it is found to be invalid, the
planning step is flagged.
 As the system expands a task, other planning steps may
be affected. If the unification results in the assignment of a
value to a variable, the planning step for instantiating that
variable is removed. The status of constraints that
contained that variable might now be resolvable; the system
checks those constraints and updates the planning steps, if
necessary.

Instantiate Variable The agenda contains a planning step for
each unbound variable within the current plan. When the
user is ready to instantiate a variable, PASSAT provides
the set of possible instantiations that satisfy all relevant
constraints; the user can select from this set, provide an
alternative value (hence, overriding a relevant constraint),
or simply mark some subset of the values as unacceptable.
When the variable is instantiated, any impacted constraints
are rechecked. A user can optionally provide a justification
(currently, a text string) for his actions.

Resolve Constraint As noted above, PASSAT provides
automated checking of constraints as part of template
application, with the agenda being used to track constraints
that the system was unable to validate. Resolve constraint
steps enable a user to declare that the system can disregard
individual constraints with the status of FALSE or UKNOWN
in a given situation. Such declarations do not have
assertional import (i.e., they do not change the system’s
world model); rather, they enable relaxation of constraints
from the planning model embodied in the domain
templates. A user can declare that a given constraint be
ignored for a variety of reasons: (a) he has more recent
information that would validate the constraint, (b) he

knows that the constraint is overly strong for the current
situation, or (c) he wants to explore a what-if scenario.
PASSAT supports the user in providing a justification
(currently, a text string) for such constraint relaxations.

Robust Plan Sketching
Hierarchical planning systems are designed to support top-
down development of plans, taking an initial high-level
objective and refining it to increasingly more concrete
levels. Human planners, in contrast, often combine
refinement-style planning with a more bottom-up approach
that identifies specific tasks to be included in a final
solution. For example, the planners of a hostage rescue
may know where and how they will establish a safe haven
without yet having decided on a particular high-level rescue
strategy.
 Within PASSAT, a user can sketch an outline of a plan,
with the system providing assistance in expanding the
sketch to a full-fledged solution for a particular objective.
A sketch consists of a collection of tasks that (1) may be
only partially specified, and (2) may occur at various levels
of abstraction in the plan hierarchy. When given a sketch,
PASSAT generates possible sketch expansions, which
correspond to least-commitment plan structures that embed
the sketch and all derived consequences. The user may
choose any of these expansions to continue planning; the
agenda will be updated to reflect the derived set of
outstanding tasks.
 The sketch processing capability within PASSAT builds
substantially on the algorithms of [Myers, 1997] but
provides robustness through an ability to recognize and
respond to invalid sketches. By invalid, we mean a sketch
for which there is no legal completion relative to the set of
defined templates. To provide robustness in the face of
invalid sketches, the sketch completion algorithm has been
extended to tolerate constraint violations that are classified
as potentially fixable according to prespecified domain
knowledge about constraints and tasks (discussed further
below). PASSAT guides the human planner through the
process of repairing fixable constraint violations within
expansions that he selects. Users can select from two types
of repair method: constraint drop and task modification.
 Constraint drop repair involves simply ignoring the
violated constraint; this type of repair is appropriate for
constraints with a ‘soft’ interpretation (i.e., they correspond
to preferences or guidelines rather than gating conditions).
For example, a template for a helicopter airlift may require
wind speed below a certain threshold; a planner may decide
to drop that constraint in the event that the current wind
speed only slightly exceeds the threshold and all other
requirements are satisfied. Constraint drop repair can be
applied only to constraints that have been explicitly
declared as ignorable for the sake of sketch repairs.
 Task modification involves changing one or more
arguments of a sketch task that are deductively linked to a
violated constraint. For instance, consider a sketch that
contains two tasks: the establishment of a safe haven at a
particular location, and a helicopter airlift to remove

 6

rescued hostages to the safe haven. If the helicopter has
insufficient range to reach the safe haven, the user would
be given the options of selecting an air asset with
appropriate range characteristics, or choosing a closer
destination for the safe haven.1 Domain knowledge restricts
the set of arguments that can be modified in service of
sketch repair, as a means of limiting the number of options
to consider (both by the user and the system).
 The robust plan sketch capability within PASSAT is
designed to be used iteratively, with a human planner
repeatedly refining a sketch in response to detected
problems until a solution is found that meets his needs.

Sketch Example To illustrate the sketch-processing
capabilities within PASSAT, we consider an example from
a hostage rescue scenario in which a group of Americans is
being held captive by guerrillas in Mogadishu's town hall.
Riyadh Airport has been selected as the jumping-off
location for the mission while the hostages are to be
evacuated to Riyadh Stadium. The high-level task for this
plan is represented as

RESCUE-HOSTAGE(MOGADISHU-TOWN-HALL,

RIYADH-AIRPORT,
RIYADH-STADIUM)

 PASSAT provides an interactive editor for specifying a
plan sketch. Figure 3 shows a completed sketch consisting
of four tasks: (1) having an infiltration team (Yellow-
Team-1) swim from a submarine (denoted by the variable
?SUBMARINE) located at the entrance to Mogadishu Port
to the port itself, (2) inserting a combat team (Green-ODA-

1 A sketch could also be repaired by changing the type of a
task, rather than simply changing the task arguments (e.g.,
ground-based evacuation rather than an airlift). PASSAT
does not currently support this class of sketch repair.

1) at the Town Hall via a UH-60A helicopter, (3) having
the combat team storm the Town Hall, and (4) positioning
a security team at the evacuation site. The labels above
each task argument identify that argument’s ‘role’ in the
task.
 Processing of this sketch by PASSAT yields six
expansions, with a range of three to four violated
constraints in each. The user can select one of these
expansions and explore options for repairing its associated
constraint violations. Figure 4 summarizes the constraint
violations and the hierarchical template structure for one of
the expansions.

Figure 5 displays the window that would be presented to
a user to assist in the repair of the original sketch. The
window summarizes the available repair options for each
violation, which may consist of dropping the constraint,
changing a parameter for a designated task, or making no
repair. Because the use of constraint dropping and task
parameter changes is restricted (by predefined domain
knowledge about their applicability), these repairs are not
necessarily applicable in each case.

To support the user in changing a task parameter, the
interface provides a drop-down list of candidate values.
This set consists of instances for the type associated with
that argument, filtered to remove values that lead to
violations of the given constraint (in accord with the
deductive linkage from the sketch task to the constraint).
This filtering is incomplete: the list may include values that
do not fix the detected problem, due to interactions with
constraints in other parts of the plan. Future versions of
PASSAT will incorporate additional checking to restrict
this set further.
 To repair the chosen expansion, the user could perform
the following repairs:

• drop the constraint VC1
• modify the Helicopter argument of the DROP task

to be UH-60L-1 rather than UH-60A-1 to

Figure 3. Sample Plan Sketch for the Hostage Rescue Task

•
•

Violated Constraints
VC1. (SITUATION-TYPE RIYADH-STADIUM HOSTILE)
VC2. (DISTANCE-< RIYADH-AIRPORT MOGADISHU-TOWN-HALL (RANGE UH-60A-1)
VC3. (> (SEA-TEMPORATURE MOGADISHU-PORT-ENTRANCE) 40)
VC4. (PLATOON-SIZED SECURITY-SQUAD-1)

Expansion Template Structure
- HOSTAGE-RECOVERY-TO-A-POTENTIALLY-UNSTABLE-AREA

- ADVANCED-RECON-OF-TARGET-AREA
- RECON-SEAPORTS-IN-AREA

- RECON-WITH-COVERT-GROUND-FORCE
- SWIM-INSERTION-FROM-SUBMARINE

- RESCUE-AND-RECOVER-HOSTAGES
- HELICOPTER-INSERTION-ROPE

- SITE-DEFENSE-LARGE-REACTION-FORCE
address the constraint VC2 (i.e., the UH-60Ls
have greater range than the UH-60As)

 drop the constraint VC3
 modify the Force-Composition argument of the

POSITION task to be SECURITY-PLATOON-1
(to address the violated constraint VC4)

Given a set of repairs, PASSAT attempts to validate the

revised sketch. In this case, the repairs resolve the original
problems but introduce a violation of the constraint
(COMBAT-EFFECTIVE SECURITY-PLATOON-1).
This new problem can be repaired by changing the Force-
Composition argument to be SECURITY-PLATOON-2
(i.e., a platoon that has been certified ready for combat).
Processing of this revised sketch yields a single expansion
with no constraint violations. Figure 1 shows the insertion
of that expansion for the original Hostage-Rescue task,
with the sketch tasks highlighted in bold font. Constraints
that the user chose to drop appear highlighted on the
agenda, and are marked as completed but ignored. At this
stage, the user could continue planning with the sketch
result, using any of PASSAT's capabilities for interactive
planning (e.g., applying templates, instantiating variables),
or by providing a plan sketch for an unrefined objective.

Advice
In future work, we will extend PASSAT to enable a user to
guide and control automated template expansion through
the metaphor of advice [McCarthy, 1958]. Advice within
PASSAT will express user recommendations for
characteristics for the desired solution, thus limiting the set
of allowed operations (human or automated) in
constructing plans. Advice will be heuristic, capturing
conditions that the user would like satisfied, but that can be
relaxed if necessary.
 PASSAT will monitor evolving plan content to identify
violations of stated advice. Violations will lead to user
notification, as well as the posting of appropriate planning
task entries on the user's agenda. This work will build on
our previous work on giving strategic advice to fully
automated planners [Myers, 1996], with adaptations and
extensions as required for use within a plan-authoring
framework.

Figure 4. Violated Constraints and Plan Structure for the Selected Expansion

Figure 5. Sample Repair Options

 8

Usability Features
We have incorporated several features into PASSAT to
facilitate its use within real applications.
 Because the development of a plan may span several
days or be interrupted by other duties, PASSAT offers the
ability to save a plan and to restart it later. As PASSAT is
further developed to support multiple planners working on
a single plan, this facility will allow parallel efforts to be
coordinated in a shared plan repository.
 A planner may sometimes develop a part of the plan and
realize that the initial idea will not work. The system
currently allows the user to undo the steps in reverse order.
In the future, the user will be able to back out of earlier
steps without necessarily losing later, independent steps.
 PASSAT is designed to reduce the chance of inadvertent
errors. Strong typing for task, function, and predicate
definitions enables the checking of inputs for consistency.
If a processing error should occur in the system, the undo
mechanism can provide recovery to a safe checkpoint.

Process Facilitation
PASSAT facilitates the user's plan-authoring process by
helping the user track information that is important to the
development of the plan. Process facilitation is supported
primarily by two capabilities:

• A prioritized agenda of planning steps listing the
decisions that the user must make to address
problems or incompleteness in the current plan.

• A mechanism for identifying key information
requirements implicit in the user's partial plan,
and for directing the user's attention to relevant
plan elements when new information arrives.

Agenda and Prioritization
PASSAT's agenda consists of the open planning steps
facing the user given the current state of planning. By
‘planning steps’, we mean decisions and actions that the
user makes in the process of developing the plan; these are
distinguished from the activities that are part of the plan
itself. PASSAT currently supports three types of planning
step – expand task, instantiate variable, and resolve
constraint – described earlier. The planning steps PASSAT
displays in its agenda can be filtered by the user along
several dimensions, including step type and completion
status. The user can also sort the agenda along several
dimensions, including step type, creation time, and
alphabetical order. The filtering and sorting facilities can
be especially useful for helping the user find a particular
step on the agenda.
 In real domains, the development of a plan can involve
hundreds or even thousands of decisions. Correspondingly,
PASSAT's agenda can grow quite long during the planning
process. The system provides some basic mechanisms to
control agenda growth – instantiating variables during

template application, automatic calculation of constraints –
and to control information overload in the agenda display –
the aforementioned agenda filtering and sorting. However,
even with these capabilities, the agenda can frequently
reach a size that is overwhelming to the user. In the face of
a large number of planning steps, we need a technique for
keeping the human planner focused on the most important
ones.
 To deal with this problem, we have developed
mechanisms for prioritizing the planning steps on the
agenda, according to some notion of a step's importance to
the planning process. Our approach has been to offer a
suite of prioritization tools, from which the user may
choose given the specific planning situation. Currently,
PASSAT supports three prioritization approaches:

Predefined Each subtask, variable, and constraint in a
template may be tagged with a qualitative priority (high,
medium, or low), corresponding to the importance of
making a decision about that entity (expanding the task,
instantiating the variable, checking the constraint).
Predefined priorities always take precedence over
PASSAT's other prioritization methods in ordering the
agenda display.

Commitment-based This approach prioritizes each
planning step according to the degree that a decision will
constrain the rest of the planning process, giving highest
priority to the most constraining decisions. This criterion is
especially useful in collaborative planning situations, where
it is important to make decisions early when they will
constrain the alternatives available to other planners. Our
technique measures commitment as the expected number of
future decisions eliminated by performing the step. We
approximate this with a recursive formula that performs a
lookahead search through the plan space. While we use
some simple heuristics to reduce the size of the search, the
current procedure is still reasonably expensive relative to
PASSAT's other update calculations. As a result, the
current implementation of commitment-based prioritization
covers only tasks. In future work, we will investigate
techniques for approximating the commitment level of a
planning step more efficiently.

Experience-based In contrast to the commitment-based
approach, which is an attempt to identify what the planner
should do next based on some theoretical model of
planning, the experience-based approach bases its
prioritization on what real human planners have done first
in the past. The experience-based prioritization technique
stores preference histories of planning steps, and learns a
preference function for them using the online learning
algorithm of [Cohen et al., 1998]. Planning steps are
indexed by the step type, the object name, and the ‘call
stack’ of templates that created the object.

Other possible methods for deriving a step's priority
include

• Urgency-based: prefer decisions that involve
execution tasks that are scheduled to start soon.

• Backtracking-based: prefer decisions that are
difficult to achieve. This is effectively the
prioritization criterion of the Fewest Alternatives
First strategy and related heuristics [Pollack et al.,
1997] used in automated planning.

• Depth-first: prefer steps that derive from the steps
most recently performed by the user. This
approach assumes that the user wants to remain
focused on one area of the plan before moving to
another.

• Breadth-first: prefer steps that derive from the
steps least recently performed by the user.

Information Requirements
In real-world planning, the human planner often makes
decisions based on criteria that are too complex or vague to
formalize in a predicate. These criteria are often based on
external sources of information (e.g., reports, meetings).
For example, a SOF planner may want to base his selection
of a rendezvous point on an overall assessment of an
intelligence report from the relevant region, though it may
be virtually impossible to formalize the exact set of
conditions the planner is looking for within that report. In
a plan-authoring system, we want to be able to capture
these criteria and information sources, and record the
connection between them and the relevant elements of the
plan. PASSAT accomplishes this through the use of
information requirements.
 In addition to specifying the method for expanding a
task, a template may also include one or more information
requirements. An information requirement specifies a
monitoring condition on an information source that may be
useful for determining the applicability of the template, for
selecting variable instantiations, or for resolving the
template's constraints.
 Currently, information requirements are used in
PASSAT to make explicit to the user the connection
between plan elements (e.g., variables, constraints) and
information sources. When a planner activates an
information requirement in a template, the system creates a
link between the information described in the information
requirement and an element or elements in the plan. When
the information arrives, PASSAT calls the planner's
attention to the relevant plan element by creating a high-
priority item on the agenda to revisit that element.
PASSAT's current method of detecting when information
has arrived is to be told explicitly by a user, but one could
imagine more sophisticated automated sentinels that would,
for example, monitor data sources (e.g., Web pages,
databases) for specific updates.
 For example, a user planning a SOF mission may make a
tentative assignment to a variable ?RENDEZ-POINT
based on the sketchy information available to him. At the
same time, he may activate an information requirement
representing an intelligence report on the region in question
and attach it to the variable ?RENDEZ-POINT. When the

intelligence report comes in, PASSAT will notify the
planner by putting the Instantiate Variable step for
?RENDEZ-POINT back on the active agenda, giving it a
high priority, and highlighting the element on the planner's
agenda display.

Related Work

In its effort to increase relevance to real problems, the field
of AI planning has recently produced a number of more
human-centric technologies that incorporate both
interactive and automated planning capabilities. Work in
this area has progressed on two fronts: (a) the incorporation
of more sophisticated reasoning into simple plan
specification tools, and (b) the addition of interactive and
mixed-initiative capabilities into existing automated
planning systems. The first category includes systems such
as the SOFTools Temporal Plan Editor, APGEN, and
INSPECT. Examples in the second category include O-
Plan, Heracles, and TRIPS.
 The SOFTools Temporal Plan Editor [GTE, 2000]
supports the graphical specification of a collection of
activities on a series of timelines; its automated capabilities
are limited to simple syntactic checking (e.g., action start
times precede end times). The APGEN system [Maldague
et al., 1997] provides a timeline-oriented interface for
creating mission sequences as well as automated validation
of predefined flight constraints. There is currently an effort
under way to link APGEN to the RAX-PS planner [Jonsson
et al., 2000] to enable the automated synthesis of plans.
The resulting system will facilitate user-driven exploration
of options, as automation enables candidate plans to be
generated rapidly. INSPECT [Valente et al., 1999]
provides an interactive planning environment in which
users can create plans by drawing on predefined knowledge
bases of planning operators. A knowledge-based critic
looks for problems in user-formulated plans, both syntactic
and (in limited cases) semantic.
 Within Heracles [Knoblock et al., 2001], a user can
construct plans by interactive selection and instantiation of
predefined HTN-style templates. Heracles provides
constraint reasoning that facilitates the planning process by
focusing users on choices that are guaranteed compatible
with earlier decisions. Plans must instantiate the
predefined templates, thus preventing users from exploring
‘out of the box’ solutions. The TRIPS system [Ferguson
and Allen, 1998] provides a dialog-based interface to a
temporal planner that enables users to interactively guide
the construction and execution of a plan through a
cooperative, mixed-initiative effort.
 O-Plan was developed initially as a fully automated
HTN planning system but has been modified to incorporate
interactive capabilities such as user support for operator
selection and variable instantiation [Drabble and Tate,
1995], and human-driven exploration of multiple courses of
action [Tate et al., 1998]. PASSAT lacks somem of the
automated planning capabilities within O-Plan (i.e., there is
no infrastructure to support automated search with

 10

backtracking), being focused instead on more human-
centric planning methods (interactive planning, sketching,
advisability). O-Plan contains a task agenda similar to that
in PASSAT, but no prioritization methods. Furthermore, it
does not include information requirements, or capabilities
related to sketching or advice.

Conclusions
Our long-term objective for PASSAT is to provide a
planning environment that covers the range from purely
interactive through mixed-initiative to user-controllable
automated planning capabilities. At all times, automation
would be readily controllable and understandable by a
human planner, enabling humans to determine when
automation is used, to control how automation applies, and
to validate or override any automated decisions.
 PASSAT currently provides a strong base of interactive,
template-based plan authoring and robust sketch-based
planning. Our main next steps on PASSAT are (a) to
increase the flexibility of the interactive planning, and (b)
to implement the advisability module for imposing high-
level constraints on a plan that can be validated
automatically.

Acknowledgments. This work was supported by DARPA
under Air Force Research Laboratory Contract F30602-00-
C-0058.

References
Allen, J. F. (1984). Towards a General Theory of Action and
Time. Artificial Intelligence 23.
Cohen, W. W., Schapire, R. E., and Singer, Y. (1998). Learning
to Order Things. In M. I. Jordan, M. J. Kearns, and S. A. Solla
(Eds). Advances in Neural Information Processing Systems, The
MIT Press.
Currie, K., and Tate, A. (1991). O-Plan: The open planning
architecture. Artificial Intelligence, 32(1).
Drabble, B., and Tate, A. (1995). O-Plan Mixed Initiative
Planning Capabilities and Protocols, Technical Report,
University of Edinburgh.
Erol, K., Hendler, J., and Nau, D. (1994). Semantics for
Hierarchical Task-Network Planning. Technical Report CS-TR-
3239, Computer Science Department, University of Maryland.
Ferguson, G., and Allen, J. (1998). TRIPS: Towards a Mixed-
Initiative Planning Assistant. In Proceedings of the AIPS
Workshop on Interactive and Collaborative Planning.
GTE. (2000). SOFTools User Manual.
Jonsson, A. K., Morris, P. H., Muscettola, N., Rajan, K., and
Smith, B. (2000). Planning in Interplanetary Space: Theory and
Practice. In Proceedings of the Fifth International Conference on
AI Planning Systems.
Karp, P. D., Myers, K. L., and Gruber, T. (1995). The Generic
Frame Protocol. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence.

Knoblock, C. A., Minton, S., Ambite, J. L., Muslea, M., Oh, J.,
and Frank, M. (2001). Mixed-initiative, Multi-source Information
Assistants. In Proceedings of the International World Wide Web
Conference.
Maldague, P., Ko, A. Y., Page, D. N., and Starbird, T. W. (1997).
APGEN: A Multi-Mission Semi-Automated Planning Tool. In
Proceedings of the 1st NASA Planning and Scheduling
Workshop.
McCarthy, J. (1958). Programs with Common Sense. Symposium
on the Mechanization of Thought Processes.
Myers, K. L. (1996). Strategic Advice for Hierarchical Planners,
pp. 112-123. In L. C., and S. C Aiello, J. Doyle. Shapiro (Eds):
Principles of Knowledge Representation and Reasoning:
Proceedings of the Fifth International Conference (KR '96),
Morgan Kaufmann Publishers.
Myers, K. L. (1997). Abductive Completion of Plan Sketches. In
Proceedings of the Fourteenth National Conference on Artificial
Intelligence, AAAI Press.
Pollack, M. E., Joslin, D., and Paolucci, M. (1997). Flaw
Selection Strategies for Partial-Order Planning. Journal of
Artificial Intelligence Research 6, 223-262.
Tate, A. (1977) Generating Project Networks, in Proceedings of
the Fifth International Joint Conference on Artificial Intelligence.
Tate, A., Dalton, J., and Levine, J. (1998). Generation of Multiple
Qualitatively Different Plans. In Proceedings of the Fourth
International Conference on AI Planning Systems, Pittsburgh,
PA.
Valente, A., Blythe, J., Gil, Y., and Swartout, W. (1999). On the
Role of Humans in Enterprise Control Systems: The Experience
of INSPECT. In Proceedings of the DARPA-JFACC
Symposium on Advances in Enterprise Control.
Wilkins, D. E. (1993). Using the SIPE-2 Planning System: A
Manual for Version 4.3, Artificial Intelligence Center, SRI
International, Menlo Park, CA.

