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Abstract 

We describe a plan-authoring system called PASSAT (Plan-
Authoring System based on Sketches, Advice, and 
Templates) that combines interactive tools for constructing 
plans with a suite of automated and mixed-initiative 
capabilities designed to complement human planning skills.  
PASSAT is organized around a library of predefined 
templates that encode task networks describing standard 
operating procedures and previous cases.  Users can select 
from these templates to apply during plan development, 
with the system providing various forms of automated 
assistance.  A mixed-initiative plan sketch facility helps 
users refine outlines for plans to complete solutions, by 
detecting problems and proposing possible fixes.  An advice 
capability enables user specification of high-level guidelines 
for plans that the system helps to enforce. Finally, PASSAT 
includes process facilitation mechanisms designed to help a 
user track and manage outstanding planning tasks and 
information requirements, as a means of improving the 
efficiency and effectiveness of the planning process. 
PASSAT is designed for applications for which a core of 
planning knowledge can be captured in predefined action 
models but where significant user control of the planning 
process is required.   

Introduction  
AI planning technology provides powerful tools for solving 
problems that require the coordination of actions in the 
pursuit of specified goals.  To date, however, there has 
been limited success in transitioning this technology to 
significant applications in the commercial, military, or 
space sectors.  A major obstacle to technology transfer lies 
with the lack of control available to potential users of 
planning systems.  AI planning systems have traditionally 
been designed to operate as black boxes: they take a 
description of a domain and a set of goals and 
automatically synthesize a plan for achieving the goals.  
Human planners, however, are generally reluctant to cede 
full control to automated planning systems in this manner. 
 Many potential consumers of planning technology 
require more user-centric tools that are designed to 
augment human skills rather than replace them.  This 
observation has led, in recent years, to the development of 

a number of plan-authoring frameworks. Plan-authoring 
systems provide a set of plan editing and manipulation 
capabilities that support users in developing plans.  These 
systems introduce a degree of structure to the planning 
process, yielding principled representations of plans with 
well-defined semantics.  Plan-authoring systems can 
include a range of planning aids that reason over this 
structure; however, the role of such automated aids is to 
augment human planning skills by facilitating human-
driven plan development.  Interest in plan-authoring 
systems is strong within both the space and military sectors, 
for their potential to improve the quality and process of 
plan development without incurring the high knowledge 
modeling costs and loss of control associated with fully 
automated planning systems. 
 This paper describes a plan-authoring system called 
PASSAT (Plan-Authoring System based on Sketches, 
Advice, and Templates) designed to support user-centric 
planning.  At its heart, PASSAT is a plan-authoring system 
in which users construct and modify plans interactively.  
Users can draw upon a library of templates, to the extent 
they desire, to assist with plan development.  Templates 
correspond to a form of hierarchical task network (HTN) 
[Tate, 1977], and may encode both parameterized standard 
operating procedures and cases corresponding to actual or 
notional plans developed for related tasks. 
 To complement these interactive tools, PASSAT 
includes a range of automated and mixed-initiative 
planning capabilities.  Users can invoke an automated 
planning mode based on standard HTN methods to expand 
any open task within a plan.  A plan sketch facility enables 
users to create outlines of plans that are then filled out 
using templates designed for similar tasks.     Advice within 
PASSAT enables users to define high-level policies to be 
satisfied by both plans and planning processes. Such 
guidance can be useful both in directing automated 
components within the system, and in tracking high-level 
guidelines that a user wants satisfied but may inadvertently 
violate through his interactive planning choices. 
 PASSAT also includes process facilitation mechanisms 
designed to aid the user in managing plan development.  
These mechanisms help the user track open tasks and 
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outstanding information requirements for the current plan.  
Such assistance is critical in complex applications, as it 
helps the user stay focused without overlooking important 
details. 
 With its combination of interactive and automated 
capabilities, PASSAT enables a user to quickly develop 
plans that draw upon past experience encoded in templates 
but are customized to his individual preferences and the 
demands of the current situation.  PASSAT has been under 
development for about a year. This paper describes both 
the current PASSAT system and the more comprehensive 
plan-authoring system toward which we are working (with 
all future work noted explicitly as such).  We begin with a 
more detailed discussion of PASSAT and an example of its 
use, followed by a description of the representational 
constructs within PASSAT, the user-centric planning 
capabilities, and the process facilitation mechanisms.  The 
final section discusses related work. 

PASSAT Overview 
Plan development within PASSAT has been guided by two 
key principles: 
 

• Flexible, ‘out of the box’ planning:  Traditional 
AI planning systems lock users into a set of 
solutions, namely, those implied by the predefined 
action models that underlie plan development.  
Within PASSAT, templates are viewed as 
guidelines for performing tasks; the human 
planner is free to expand the set of solutions 
defined by the templates. In particular, a user can 
override constraints, drop tasks, or insert 
additional tasks in accord with his personal 
preferences or the demands of the current 
situation.  Such flexibility is critical for domains 
in which correct and comprehensive collections of 
templates cannot be provided. 

• Controllable user-centric automation: Automated 
capabilities within PASSAT are designed both to 
complement human planning skills and to be 
readily directable by a human.  Automation would 
be invoked under user control only in contexts 
where he feels that it would be beneficial.  

Domain Characteristics 
PASSAT is generic, domain-independent technology but is 
tailored toward applications with the following 
characteristics. 
 
(a) The complexity of the domain precludes full capture 

of all relevant planning knowledge.  However, partial 
planning models can be developed. 

 
(b) Human input is critical, but some amount of 

automation would both improve plan quality and 
reduce overall planning time.  

 
 Our motivating application domain, Special Operations 
Forces (SOF) mission planning, has these characteristics.  
Standard operating procedures exist for many high- and 
mid-level activities in the SOF domain, and are readily 
amenable to encoding within an HTN representation.  For 
example, a hostage rescue operation can be characterized 
as consisting of the high-level objectives of performing 
reconnaissance in the areas around the rescue site, 
establishing a safe haven to which to remove the hostages, 
undertaking the assault to rescue the hostages, and 
transporting the hostages to the safe haven.  Low-level 
operations follow standard doctrine and can also be 
modeled in a relatively straightforward manner.1 
Intermediate strategy decisions pose a bigger challenge. 
For example, informed selection of areas and methods for 
reconnaissance requires deep background knowledge of 
reconnaissance operations, breadth of understanding of the 
current situation, and significant experience. Capturing and 
modeling this type of strategic knowledge in full presents a 
tremendous challenge. 

SOF planning lies well beyond the range of current 
automated planning technologies; moreover, fully 
automated solutions are unlikely ever to succeed because of 
the difficulty in formulating strategic knowledge with 
sufficient fidelity.  In contrast, a PASSAT-style plan-
authoring system provides a good technological match for 
the SOF planning domain. Missions arise unexpectedly, 
resulting in a need to assemble high-quality plans rapidly.  
Thus, the availability of tools to expedite plan development 
is important.  Because many types of SOF operations can 
be broadly characterized with predefined templates, 
knowledge bases can be developed that capture certain 
portions of the planning process.  However, individual 
operations tend to be highly distinctive, making it 
important to have tools that enable users to modify and 
customize plans to suit the needs of a particular situation. 
 Many potential application domains for planning 
technology share these characteristics of having partially 
formalizable domain knowledge and requiring significant 
user input to produce high-quality, situation-specific plans.  
On the military side, examples include air operations, 
disaster relief planning, and noncombatant evacuation 
operations.  Space applications include science mission 
planning and ground operations planning. 

PASSAT Example    
Figure 1 shows a snapshot of the PASSAT interface during 
a planning session. The large frame on the left contains a  
hierarchical decomposition of the current partial plan.  
Items next to folder icons are tasks that have been 
expanded; items next to star icons are tasks that can be 
expanded further (either through automated template 
application or interactively); and items next to document 
                                                 
1 Many of our templates were derived directly from SOF 
field manuals. 



icons are tasks that match no templates. The frame on the 
upper right shows the current agenda – the list of planning 
steps the user must perform to address outstanding issues.  
The frame on the lower right shows the list of information 
requirements – sources of information that have been 
identified by the user or PASSAT's planning knowledge as 
relevant to various portions of the planning process. 
 The human planner develops the plan by selecting a 
planning step from the agenda and performing that step 
(many of these planning steps are accessible through the 
plan display as well).  If the planning step is to expand the 
PROVIDE-CSAR-COVERAGE task, for example, the 
planner would be presented with several options: apply one 
of the templates that matches the task (see Figure 2), enter 
an expansion manually, or create a sketch for achieving 
the PROVIDE-CSAR-COVERAGE task and work with 
PASSAT to refine that sketch.  Performing this planning 
step may cause additional planning steps to be added to the 
agenda (i.e., new tasks, variables, and constraints may have 
been introduced into the plan) and new information 
requirements as well.  

Plan Representation 
PASSAT's representation of plans and tasks is based on a 
fairly standard HTN model (similar to that of [Erol et al., 
1994]), augmented with a rich temporal representation for 
tasks.  Using PASSAT, a user would describe the objective 
of the plan in the form of one or more task statements,  
each consisting of a task operator and terms (variables, 
instances, or functions applied to terms). 
 
Templates A template describes one way that a task  (i.e., 
the template’s purpose) can be decomposed into subtasks.  
A template consists of a set of these subtasks, as well the 
variables used in the template, constraints on the 
applicability of the template, and the effects of successfully 
performing individual tasks and the entire template. 
Different templates may describe different decompositions 
for the same task. 

Figure 1. PASSAT Interface during Plan Development 
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 PASSAT’s template representation supports two features 
not found in the framework of [Erol et al. 1994], namely 
information requirements (discussed in detail below) and 
enumeration tasks.  Enumeration tasks enable the 
specification of a set of tasks relative to a set of terms that 
satisfy a designed predicate.  For example, the enumeration 
task 
 
∀ ?city.DISTANCE(?city,?hostage-locn)<20

� RECON(?city)

indicates that a RECON task should be performed  for each 
city within the specified distance.  Other HTN frameworks 
(e.g., O-Plan [Currie and Tate, 1991] and SIPE-2 [Wilkins 
1993]) provide similar mechanisms for enumerating 
subtasks relative to a designated constraint. 
 

Constraints Constraints consist of state predicates that 
denote hard or soft conditions, perhaps due to physical 
laws or policy rules.  PASSAT employs a three-valued 
logic for constraints, grounded in the values TRUE, 
FALSE, and UNKNOWN.    
 Automated constraint checking is performed when 
constraints are created or modified in the plan.  Checking 
of ground constraints may return a status of UNKNOWN, if 
the information is not specified in the world state; such 
constraints would need to be validated explicitly by the 
user.  Checking of nonground constraints occurs only when 
the number of possible instantiations is less than a 
predefined threshold, with the system testing whether the 
constraint is valid or invalid for each (i.e., establishing that 
the constraint is necessarily true or false independent of the 
instantiation).   Otherwise, the system returns UNKNOWN 
and the constraint is rechecked when more variables are 
instantiated. 
 Unlike in automated planning systems, a constraint with 
value other than TRUE does not necessarily halt the process 
or cause backtracking.  Instead, a violated constraint is 
called to the  attention of the user, who has the choice of 
ignoring the violation or changing the step that triggered 
the violation. 
 
Temporal Representation PASSAT supports the 
scheduling of tasks via constraints on the earliest and latest 
possible times for the start and end points of tasks.  
Temporal constraints typically refer to these end points but 
may also refer to upper and lower bounds on those time 
points. Temporal constraints can also be expressed using 
Allen’s interval relations [(Allen, 1984)].1 
 
Domain Definition PASSAT utilizes a number of 
coordinated databases to define its application domain.  An 
ontology (based on the Generic Frame Protocol 
representation [Karp et al., 1995]) defines the hierarchical 
organization of classes and instances and their properties.  
State predicate and task statements are declared, specifying 
the number and classes of their arguments.  Functions are 
similarly declared, with the additional declaration of the 
class of the function's value.  Some predicates and 
functions are computable (e.g., <, +, and Distance) 
while others are defined by their extent.  The world state is 
defined by a set of ground state predicates.  

User-centric Plan Development 
PASSAT currently provides two main modes of plan 
development: interactive plan refinement and plan 
sketching.   Future versions of PASSAT will also support 
an advice module to guide plan development. 
                                                 
1 The temporal reasoning portion of the system is not yet 
fully implemented. 

Figure 2. A Candidate Template for Task Refinement



Interactive Plan Refinement  
Interactive plan refinement in PASSAT involves three 
types of planning step: expand task, instantiate variable, 
and resolve constraint. 
 
Expand Task When a task is to be expanded, the system 
offers the user the choice of applying a predefined 
template, specifying a set of subtasks interactively, 
sketching a solution (see below), or dropping the task.  
 When the user chooses a template to apply, the system 
first unifies the task and the template's purpose, making 
appropriate substitutions throughout the template.  
PASSAT adds the (partially instantiated) subtasks and 
constraints of the template to the plan.  In addition, it 
extends the agenda to include planning steps to expand the 
new subtasks, to check the new constraints, and to 
instantiate any unbound variables from the template.  The 
planning step for the parent task is marked as completed 
and removed from the agenda.  In the displayed plan, the 
parent task is shown with its subtasks.   
 As the system performs this step, it also checks the status 
of all new constraints.  If one is found to be valid, the 
planning step to check it is marked as completed and 
removed from the agenda.  If it is found to be invalid, the 
planning step is flagged.  
 As the system expands a task, other planning steps may 
be affected.  If the unification results in the assignment of a 
value to a variable, the planning step for instantiating that 
variable is removed.  The status of constraints that 
contained that variable might now be resolvable; the system 
checks those constraints and updates the planning steps, if 
necessary. 
 
Instantiate Variable The agenda contains a planning step for 
each unbound variable within the current plan.  When the 
user is ready to instantiate a variable, PASSAT provides 
the set of possible instantiations that satisfy all relevant 
constraints; the user can select from this set, provide an 
alternative value (hence, overriding a relevant constraint), 
or simply mark some subset of the values as unacceptable.  
When the variable is instantiated, any impacted constraints 
are rechecked.  A user can optionally provide a justification 
(currently, a text string) for his actions. 
 
Resolve Constraint As noted above, PASSAT provides 
automated checking of constraints as part of template 
application, with the agenda being used to track constraints 
that the system was unable to validate. Resolve constraint 
steps enable a user to declare that the system can disregard 
individual constraints with the status of FALSE or UKNOWN 
in a given situation. Such declarations do not have 
assertional import (i.e., they do not change the system’s 
world model); rather, they enable relaxation of constraints 
from the planning model embodied in the domain 
templates.  A user can declare that a given constraint be 
ignored for a variety of reasons: (a) he has more recent 
information that would validate the constraint, (b) he 

knows that the constraint is overly strong for the current 
situation, or (c) he wants to explore a what-if scenario. 
PASSAT supports the user in providing a justification 
(currently, a text string) for such constraint relaxations.  

Robust Plan Sketching  
Hierarchical planning systems are designed to support top-
down development of plans, taking an initial high-level 
objective and refining it to increasingly more concrete 
levels.  Human planners, in contrast, often combine 
refinement-style planning with a more bottom-up approach 
that identifies specific tasks to be included in a final 
solution.  For example, the planners of a hostage rescue 
may know where and how they will establish a safe haven 
without yet having decided on a particular high-level rescue 
strategy.   
 Within PASSAT, a user can sketch an outline of a plan, 
with the system providing assistance in expanding the 
sketch to a full-fledged solution for a particular objective.  
A sketch consists of a collection of tasks that (1) may be 
only partially specified, and (2) may occur at various levels 
of abstraction in the plan hierarchy.  When given a sketch, 
PASSAT generates possible sketch expansions, which 
correspond to least-commitment plan structures that embed 
the sketch and all derived consequences.  The user may 
choose any of these expansions to continue planning; the 
agenda will be updated to reflect the derived set of 
outstanding tasks. 
 The sketch processing capability within PASSAT builds 
substantially on the algorithms of [Myers, 1997] but 
provides robustness through an ability to recognize and 
respond to invalid sketches.  By invalid, we mean a sketch 
for which there is no legal completion relative to the set of 
defined templates. To provide robustness in the face of 
invalid sketches, the sketch completion algorithm has been 
extended to tolerate constraint violations that are classified 
as potentially fixable according to prespecified domain 
knowledge about constraints and tasks (discussed further 
below).  PASSAT guides the human planner through the 
process of repairing fixable constraint violations within 
expansions that he selects. Users can select from two types 
of repair method: constraint drop and task modification.  
 Constraint drop repair involves simply ignoring the 
violated constraint; this type of repair is appropriate for 
constraints with a ‘soft’ interpretation (i.e., they correspond 
to preferences or guidelines rather than gating conditions). 
For example, a template for a helicopter airlift may require 
wind speed below a certain threshold; a planner may decide 
to drop that constraint in the event that the current wind 
speed only slightly exceeds the threshold and all other 
requirements are satisfied. Constraint drop repair can be 
applied only to constraints that have been explicitly 
declared as ignorable for the sake of sketch repairs.   
  Task modification involves changing one or more 
arguments of a sketch task that are deductively linked to a 
violated constraint.  For instance, consider a sketch that 
contains two tasks: the establishment of a safe haven at a 
particular location, and a helicopter airlift to remove 
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rescued hostages to the safe haven.  If the helicopter has 
insufficient range to reach the safe haven, the user would 
be given the options of selecting an air asset with 
appropriate range characteristics, or choosing a closer 
destination for the safe haven.1 Domain knowledge restricts 
the set of arguments that can be modified in service of 
sketch repair, as a means of limiting the number of options 
to consider (both by the user and the system). 
 The robust plan sketch capability within PASSAT is 
designed to be used iteratively, with a human planner 
repeatedly refining a sketch in response to detected 
problems until a solution is found that meets his needs.  
 
Sketch Example To illustrate the sketch-processing 
capabilities within PASSAT, we consider an example from 
a hostage rescue scenario in which a group of Americans is 
being held captive by guerrillas in Mogadishu's town hall.  
Riyadh Airport has been selected as the jumping-off 
location for the mission while the hostages are to be 
evacuated to Riyadh Stadium. The high-level task for this 
plan is represented as 
 
RESCUE-HOSTAGE(MOGADISHU-TOWN-HALL,

RIYADH-AIRPORT,
RIYADH-STADIUM)

  
 PASSAT provides an interactive editor for specifying a 
plan sketch. Figure 3 shows a completed sketch consisting 
of four tasks: (1) having an infiltration team (Yellow-
Team-1) swim from a submarine (denoted by the variable 
?SUBMARINE) located at the entrance to Mogadishu Port 
to the port itself, (2) inserting a combat team (Green-ODA-
                                                 
1 A sketch could also be repaired by changing the type of a 
task, rather than simply changing the task arguments (e.g., 
ground-based evacuation rather than an airlift).  PASSAT 
does not currently support this class of sketch repair. 

1) at the Town Hall via a UH-60A helicopter, (3) having 
the combat team storm the Town Hall, and (4) positioning 
a security team at the evacuation site.  The labels above 
each task argument identify that argument’s ‘role’ in the 
task. 
 Processing of this sketch by PASSAT yields six 
expansions, with a range of three to four violated 
constraints in each. The user can select one of these 
expansions and explore options for repairing its associated 
constraint violations. Figure 4 summarizes the constraint 
violations and the hierarchical template structure for one of 
the expansions. 

Figure 5 displays the window that would be presented to 
a user to assist in the repair of the original sketch.  The 
window summarizes the available repair options for each 
violation, which may consist of dropping the constraint, 
changing a parameter for a designated task, or making no 
repair. Because the use of constraint dropping and task 
parameter changes is restricted (by predefined domain 
knowledge about their applicability), these repairs are not 
necessarily applicable in each case.   

To support the user in changing a task parameter, the 
interface provides a drop-down list of candidate values.  
This set consists of instances for the type associated with 
that argument, filtered to remove values that lead to 
violations of the given constraint (in accord with the 
deductive linkage from the sketch task to the constraint). 
This filtering is incomplete: the list may include values that 
do not fix the detected  problem, due to interactions with 
constraints in other  parts of the plan. Future versions of 
PASSAT will incorporate additional checking to restrict 
this set further.  
 To repair the chosen expansion, the user could perform 
the following repairs: 

• drop the constraint VC1 
• modify the Helicopter argument of the DROP task 

to be UH-60L-1 rather than UH-60A-1 to 

Figure 3. Sample Plan Sketch for the Hostage Rescue Task 



•
•

   
Violated Constraints 
VC1.  (SITUATION-TYPE RIYADH-STADIUM HOSTILE)
VC2. (DISTANCE-< RIYADH-AIRPORT MOGADISHU-TOWN-HALL (RANGE UH-60A-1)
VC3. (> (SEA-TEMPORATURE MOGADISHU-PORT-ENTRANCE) 40)
VC4. (PLATOON-SIZED SECURITY-SQUAD-1)

Expansion Template Structure 
- HOSTAGE-RECOVERY-TO-A-POTENTIALLY-UNSTABLE-AREA

- ADVANCED-RECON-OF-TARGET-AREA
- RECON-SEAPORTS-IN-AREA

- RECON-WITH-COVERT-GROUND-FORCE
- SWIM-INSERTION-FROM-SUBMARINE

- RESCUE-AND-RECOVER-HOSTAGES
- HELICOPTER-INSERTION-ROPE

- SITE-DEFENSE-LARGE-REACTION-FORCE
address the constraint VC2   (i.e., the UH-60Ls 
have greater range than the UH-60As ) 

 drop the constraint VC3 
 modify the Force-Composition argument of the 

POSITION task to be SECURITY-PLATOON-1  
(to address the violated constraint  VC4 )  

 
Given a set of repairs, PASSAT attempts to validate the 

revised sketch.  In this case, the repairs resolve the original 
problems but introduce a violation of the constraint  
(COMBAT-EFFECTIVE SECURITY-PLATOON-1).  
This new problem can be repaired by changing the Force-
Composition argument to be SECURITY-PLATOON-2 
(i.e., a platoon that has been certified ready for combat). 
Processing of this revised sketch yields a single expansion 
with no constraint violations.  Figure 1 shows the insertion 
of that expansion for the original Hostage-Rescue task, 
with the sketch tasks highlighted in bold font.  Constraints 
that the user chose to drop appear highlighted on the 
agenda, and are marked as completed but ignored.  At this 
stage, the user could continue planning with the sketch 
result, using any of PASSAT's capabilities for interactive 
planning (e.g., applying templates, instantiating variables), 
or by providing a plan sketch for an unrefined objective. 

Advice 
In future work, we will extend PASSAT to enable a user to 
guide and control automated template expansion through 
the metaphor of advice [McCarthy, 1958]. Advice within 
PASSAT will express user recommendations for 
characteristics for the desired solution, thus limiting the set 
of allowed operations (human or automated) in 
constructing plans.  Advice will be heuristic, capturing 
conditions that the user would like satisfied, but that can be 
relaxed if necessary. 
 PASSAT will monitor evolving plan content to identify 
violations of stated advice.  Violations will lead to user 
notification, as well as the posting of appropriate planning 
task entries on the user's agenda.  This work will build on 
our previous work on giving strategic advice to fully 
automated planners [Myers, 1996], with adaptations and 
extensions as required for use within a plan-authoring 
framework. 

Figure 4. Violated Constraints and Plan Structure for the Selected Expansion 

Figure 5.  Sample  Repair Options  
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Usability Features  
We have incorporated several features into PASSAT to 
facilitate its use within real applications. 
 Because the development of a plan may span several 
days or be interrupted by other duties, PASSAT offers the 
ability to save a plan and to restart it later.  As PASSAT is 
further developed to support multiple planners working on 
a single plan, this facility will allow parallel efforts to be 
coordinated in a shared plan repository. 
 A planner may sometimes develop a part of the plan and 
realize that the initial idea will not work.  The system 
currently allows the user to undo the steps in reverse order.  
In the future, the user will be able to back out of earlier 
steps without necessarily losing later, independent steps. 
 PASSAT is designed to reduce the chance of inadvertent 
errors.  Strong typing for task, function, and predicate 
definitions enables the checking of inputs for consistency.  
If a processing error should occur in the system, the undo 
mechanism can provide recovery to a safe checkpoint. 

Process Facilitation 
PASSAT facilitates the user's plan-authoring process by 
helping the user track information that is important to the 
development of the plan.  Process facilitation is supported 
primarily by two capabilities:  
 

• A prioritized agenda of planning steps listing the 
decisions that the user must make to address 
problems or incompleteness in the current plan. 

• A mechanism for identifying key information 
requirements implicit in the user's partial plan, 
and for directing the user's attention to relevant 
plan elements when new information arrives.     

Agenda and Prioritization   
PASSAT's agenda consists of the open planning steps 
facing the user given the current state of planning.  By 
‘planning steps’, we mean decisions and actions that the 
user makes in the process of developing the plan; these are 
distinguished from the activities that are part of the plan 
itself.  PASSAT currently supports three types of planning 
step – expand task, instantiate variable, and resolve 
constraint – described earlier. The planning steps PASSAT 
displays in its agenda can be filtered by the user along 
several dimensions, including step type and completion 
status.  The user can also sort the agenda along several 
dimensions, including step type, creation time, and 
alphabetical order. The filtering and sorting facilities can 
be especially useful for helping the user find a particular 
step on the agenda. 
 In real domains, the development of a plan can involve 
hundreds or even thousands of decisions.  Correspondingly, 
PASSAT's agenda can grow quite long during the planning 
process.  The system provides some basic mechanisms to 
control agenda growth – instantiating variables during 

template application, automatic calculation of constraints – 
and to control information overload in the agenda display – 
the aforementioned agenda filtering and sorting.  However, 
even with these capabilities, the agenda can frequently 
reach a size that is overwhelming to the user.  In the face of 
a large number of planning steps, we need a technique for 
keeping the human planner focused on the most important 
ones. 
 To deal with this problem, we have developed 
mechanisms for prioritizing the planning steps on the 
agenda, according to some notion of a step's importance to 
the planning process.  Our approach has been to offer a 
suite of prioritization tools, from which the user may 
choose given the specific planning situation.  Currently, 
PASSAT supports three prioritization approaches: 
 
Predefined Each subtask, variable, and constraint in a 
template may be tagged with a qualitative priority (high, 
medium, or low), corresponding to the importance of 
making a decision about that entity (expanding the task, 
instantiating the variable, checking the constraint).  
Predefined priorities always take precedence over 
PASSAT's other prioritization methods in ordering the 
agenda display.  
 
Commitment-based This approach prioritizes each 
planning step according to the degree that a decision will 
constrain the rest of the planning process, giving highest 
priority to the most constraining decisions.  This criterion is 
especially useful in collaborative planning situations, where 
it is important to make decisions early when they will 
constrain the alternatives available to other planners.  Our 
technique measures commitment as the expected number of 
future decisions eliminated by performing the step.  We 
approximate this with a recursive formula that performs a 
lookahead search through the plan space.  While we use 
some simple heuristics to reduce the size of the search, the 
current procedure is still reasonably expensive relative to 
PASSAT's other update calculations. As a result, the 
current implementation of commitment-based prioritization 
covers only tasks.  In future work, we will investigate 
techniques for approximating the commitment level of a 
planning step more efficiently. 
 
Experience-based In contrast to the commitment-based 
approach, which is an attempt to identify what the planner 
should do next based on some theoretical model of 
planning, the experience-based approach bases its 
prioritization on what real human planners have done first 
in the past.  The experience-based prioritization technique 
stores preference histories of planning steps, and learns a 
preference function for them using the online learning 
algorithm of [Cohen et al., 1998].  Planning steps are 
indexed by the step type, the object name, and the ‘call 
stack’ of templates that created the object. 
 
Other possible methods for deriving a step's priority 
include 



• Urgency-based: prefer decisions that involve 
execution tasks that are scheduled to start soon. 

• Backtracking-based: prefer decisions that are 
difficult to achieve. This is effectively the 
prioritization criterion of the Fewest Alternatives 
First strategy and related heuristics [Pollack et al., 
1997] used in automated planning. 

• Depth-first:  prefer steps that derive from the steps 
most recently performed by the user. This 
approach assumes that the user wants to remain 
focused on one area of the plan before moving to 
another. 

• Breadth-first: prefer steps that derive from the 
steps least recently performed by the user.  

Information Requirements 
In real-world planning, the human planner often makes 
decisions based on criteria that are too complex or vague to 
formalize in a predicate.  These criteria are often based on 
external sources of information (e.g., reports, meetings).  
For example, a SOF planner may want to base his selection 
of a rendezvous point on an overall assessment of an 
intelligence report from the relevant region, though it may 
be virtually impossible to formalize the exact set of 
conditions the planner is looking for within that report.  In 
a plan-authoring system, we want to be able to capture 
these criteria and information sources, and record the 
connection between them and the relevant elements of the 
plan.  PASSAT accomplishes this through the use of 
information requirements. 
 In addition to specifying the method for expanding a 
task, a template may also include one or more information 
requirements.  An information requirement specifies a 
monitoring condition on an information source that may be 
useful for determining the applicability of the template, for 
selecting variable instantiations, or for resolving the 
template's constraints. 
 Currently, information requirements are used in 
PASSAT to make explicit to the user the connection 
between plan elements (e.g., variables, constraints) and 
information sources. When a planner activates an 
information requirement in a template, the system creates a 
link between the information described in the information 
requirement and an element or elements in the plan.  When 
the information arrives, PASSAT calls the planner's 
attention to the relevant plan element by creating a high-
priority item on the agenda to revisit that element.  
PASSAT's current method of detecting when information 
has arrived is to be told explicitly by a user, but one could 
imagine more sophisticated automated sentinels that would, 
for example, monitor data sources (e.g., Web pages, 
databases) for specific updates. 
 For example, a user planning a SOF mission may make a 
tentative assignment to a variable ?RENDEZ-POINT
based on the sketchy information available to him.  At the 
same time, he may activate an information requirement 
representing an intelligence report on the region in question 
and attach it to the variable ?RENDEZ-POINT. When the 

intelligence report comes in, PASSAT will notify the 
planner by putting the Instantiate Variable step for 
?RENDEZ-POINT back on the active agenda, giving it a 
high priority, and highlighting the element on the planner's 
agenda display. 

Related Work 

In its effort to increase relevance to real problems, the field 
of AI planning has recently produced a number of more 
human-centric technologies that incorporate both 
interactive and automated planning capabilities.  Work in 
this area has progressed on two fronts: (a) the incorporation 
of more sophisticated reasoning into simple plan 
specification tools, and (b) the addition of interactive and 
mixed-initiative capabilities into existing automated 
planning systems.  The first category includes systems such 
as the SOFTools Temporal Plan Editor, APGEN, and 
INSPECT.  Examples in the second category include O-
Plan, Heracles, and TRIPS. 
 The SOFTools Temporal Plan Editor [GTE, 2000] 
supports the graphical specification of a collection of 
activities on a series of timelines; its automated capabilities 
are limited to simple syntactic checking (e.g., action start 
times precede end times). The APGEN system [Maldague 
et al., 1997] provides a timeline-oriented interface for 
creating mission sequences as well as automated validation 
of predefined flight constraints. There is currently an effort 
under way to link APGEN to the RAX-PS planner [Jonsson 
et al., 2000] to enable the automated synthesis of plans. 
The resulting system will facilitate user-driven exploration 
of options, as automation enables candidate plans to be 
generated rapidly. INSPECT [Valente et al., 1999] 
provides an interactive planning environment in which 
users can create plans by drawing on predefined knowledge 
bases of planning operators.  A knowledge-based critic 
looks for problems in user-formulated plans, both syntactic 
and (in limited cases) semantic. 
 Within Heracles [Knoblock et al., 2001], a user can 
construct plans by interactive selection and instantiation of 
predefined HTN-style templates. Heracles provides 
constraint reasoning that facilitates the planning process by 
focusing users on choices that are guaranteed compatible 
with earlier decisions.  Plans must instantiate the 
predefined templates, thus preventing users from exploring 
‘out of the box’ solutions. The TRIPS system [Ferguson 
and Allen, 1998] provides a dialog-based interface to a 
temporal planner that enables users to interactively guide 
the construction and execution of a plan through a 
cooperative, mixed-initiative effort. 
 O-Plan was developed initially as a fully automated 
HTN planning system but has been modified to incorporate 
interactive capabilities such as user support for operator 
selection and variable instantiation [Drabble and Tate, 
1995], and human-driven exploration of multiple courses of 
action [Tate et al., 1998].  PASSAT lacks somem of the 
automated planning capabilities within O-Plan (i.e., there is 
no infrastructure to support automated search with 
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backtracking), being focused instead on more human-
centric planning methods (interactive planning, sketching, 
advisability). O-Plan contains a task agenda similar to that 
in PASSAT, but no prioritization methods. Furthermore, it 
does not include information requirements, or capabilities 
related to sketching or advice. 

Conclusions 
Our long-term objective for PASSAT is to provide a 
planning environment that covers the range from purely 
interactive through mixed-initiative to user-controllable 
automated planning capabilities. At all times, automation 
would be readily controllable and understandable by a 
human planner, enabling humans to determine when 
automation is used, to control how automation applies, and 
to validate or override any automated decisions. 
 PASSAT currently provides a strong base of interactive, 
template-based plan authoring and robust sketch-based 
planning.  Our main next steps on PASSAT are (a) to 
increase the flexibility of the interactive planning, and (b) 
to implement the advisability module for imposing high-
level constraints on a plan that can be validated 
automatically. 
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