
Data Clustering with a Relational Push-Pull Model

Adam Anthony and Marie desJardins
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore, MD 21250

{aanthon2, mariedj}@cs.umbc.edu

Abstract

We present a new generative model for relational
data in which relations between objects can have ei-
ther a binding or a separating effect. For example, in
a group of students separated into gender clusters, a
“dating” relation would appear most frequently between
the clusters, but a “roommate” relation would appear
more often within clusters. In visualizing these rela-
tions, one can imagine that the “dating” relation effec-
tively pushes clusters apart, while the “roommate” re-
lation pulls clusters into tighter formations. A unique
aspect of the model is that an edge’s existence is depen-
dent on both the clusters to which the two connected
objects belong and the features of the connected objects.
We use simulated annealing to search for optimal val-
ues of the unknown model parameters, where the ob-
jective function is a Bayesian score derived from the
generative model. Results describing the performance
of the model are shown with artificial data as well as
a subset of the Internet Movie Database. The results
show that discovering a relation’s tendency to either
push or pull is critical to discovering a consistent clus-
tering.

1. Introduction

Relational data clustering is a form of relational
learning that clusters data using the relational struc-
ture of data sets to guide the clustering. Many ap-
proaches for relational clustering have been proposed
recently. The common assumption in much of this
research is that relations have a binding tendency
[6, 1, 8, 7]. That is, edges are assumed to appear more
frequently within clusters than between clusters.

This binding quality may be too strong an assump-
tion. Bhattacharya and Getoor [1] acknowledge that it
is possible for a relation to provide “negative evidence,”
where the presence of a relation between two objects

implies that the objects belong in different clusters. If
most of the edges in a relational set provide negative
evidence, then this set should be considered to have a
separating, rather than a binding, tendency. Consider
a social network of university students containing both
men and women. If the social network is partitioned
by gender, edges for a dating relation will appear most
frequently between the clusters. This can be visual-
ized as an approximately bipartite structure between
the two clusters that “pushes” them apart. Edges for
a roommate relation, on the other hand, will appear
most frequently within the clusters. This binding rela-
tion can be visualized as a net that “pulls” the objects
in a cluster closer together.

Given that a relation can have either of these two
tendencies, accurate clustering in relational data re-
quires determining whether each relation tends to bind
or separate objects. Bhattacharya and Getoor [1] and
others have used domain-specific knowledge to identify
and process negative evidence. The contribution of our
research is a domain-independent model that handles
the case where the tendency of each relation is used to
guide the clustering. These tendencies can be provided
as background knowledge, or, if such knowledge is un-
available, they can be inferred from the data using an
estimation method that we present.

2. The Relational Push-Pull Model

We propose the Relational Push-Pull Model
(RPPM), a Bayesian model that can be used to find
clusterings in relational data. In this model, object
features depend on the cluster the object belongs to,
modeled as a mixture of probability distributions (e.g.,
a mixture of Gaussians), where the objects in each clus-
ter are assumed to be generated by the distribution
specified for that cluster. To formulate a relation dis-
tribution, we use the concept of existence uncertainty
[3] for relations. For each pair of objects l and m in

a data set, we calculate the probability that a link ex-
ists between the objects. For the remainder of this
paper, it is assumed that the data is represented as a
relation graph where the objects are vertices and there
is labeled edge between two objects if a relation of a
certain type exists between them.

Ultimately, the goal is to determine the most likely
clustering, given the set of observed objects (O) and
the set of observed edges associated with the relations
(R). The probability of a clustering, Pr(C | O, R),
can be used as an objective function for a local search
method, and can be computed using Bayes’ rule as:

(1) Pr(C | O, R) = α Pr(R | C, O)Pr(C | O),

where α is a normalizing constant. The remainder of
this section explains how we calculate the two right-
hand terms: Pr(R | C, O) and Pr(C | O).

2.1. Modeling Relation Graphs as Push or
Pull

Getoor et al. [3] present an edge existence prob-
ability that is somewhat different from ours. In their
work, edge existence depends only on the class labels of
the objects that the edge would connect. The notion
of edge existence in an RPPM also incorporates the
concept of relational autocorrelation [4]: that is, the
tendency for feature values in linked objects to have
similar values.

The advantage of the RPPM is that it can be used to
quantitatively represent both push and pull relations as
a function of both cluster membership and the object’s
features. To explain how this is achieved, we first dis-
cuss the benefits of a cluster-only edge existence model
and a feature-based relational autocorrelation model
separately, then show how the two ideas can be com-
bined.

One way to model edge existence using only cluster
labels is to specify two constant probabilities, IC and
OC. IC (in cluster) is the probability of an edge ex-
isting between l and m if the objects are in the same
cluster, and OC (out cluster) is the probability that
the edge exists if they are in different clusters. Pull-
type relation graphs are created when the value of IC
is much greater than OC. Conversely, push-type re-
lation graphs result when the value of IC is much
smaller than OC. In either case (push or pull), edge
information can easily be used to help find the clus-
tering. When IC is very similar to OC, the relation
graph’s tendency is ambiguous, and cannot help find
the clustering. This is analogous to clustering evenly-
distributed, sparse data objects: there are no patterns
in the data to exploit. The benefit of using constants to

model edge existence is that it clearly models whether
a relation’s tendency is push or pull. The drawback is
that it makes no use of relational autocorrelation.

Jensen and Neville [4] claim that relational autocor-
relation is a common phenomenon in relational data
sets. A simple approach to exploiting autocorrelation
for edge existence is to use a probabilistic function of
the objects’ features, f(l, m), where l and m are ob-
jects, represented as feature vectors. Using a function
of object features for edge existence has the advantage
of emphasizing the influence of autocorrelation, but it
does not model the relation graph’s tendency to push
or pull.

RPPM incorporates the benefits of both approaches
by making edge existence dependent on both cluster
membership and object features. This dependence is
modeled by the following formula:

Pr(elm | l ∈ Ci, m ∈ Cj , λIt , λOt)

=

{
IC := f(l, m) − (1 − λIt) if Ci = Cj ;
OC := f(l, m)− (1 − λOt) if Ci �= Cj .

(2)

Instead of being constant, IC and OC are functions
that are selected depending on the cluster membership
of l and m. The parameters λIt and λOt determine
which of the two functions is higher for a relation type
t, and thus whether intra-cluster edges or inter-cluster
edges are more likely. The expression (1 − λ) is used
above to make the value of each lambda more intuitive:
a higher lambda corresponds to a higher probability of
edge existence. If an IC or OC value becomes less than
zero, the probability value for that edge is constrained
to be zero, so that all values returned are nonnegative.
Equation 2 assumes that each cluster has the same IC
and OC functions..

To add support for directed edges, we introduce a
new parameter, Λt, which is a k × k matrix (where k
is the number of clusters) that replaces λIt and λOt

for a relation type t. The diagonal entries in Λt are
the in-cluster parameter values, so that the probability
of an edge existing between objects l and m that are
both in cluster 1 is determined using the value stored
in Λt11. On either side of the diagonal, the (i, j)th

entry in Λt specifies the probability that a directed edge
exists between a randomly selected object in cluster i
and a randomly selected object in cluster j. Using Λt,
Equation 2 can be modified to support directed edges
as follows:
(3)
Pr(elm | l ∈ Ci, m ∈ Cj , Λt) = f(l, m) − (1 − Λtij) .

The probability distribution of a relational graph
for one edge type (Gt) is the product of each edge’s

probability of existence:

Pr(Gt | C, O) =
∏

elm∈Gt

Pr(elm | . . .)×
∏

elm∈O×O,/∈Gt

{1 − Pr(elm | . . .)} ,

(4)

where Pr(elm | . . .) is calculated as in Equation 2. The
conditioning contexts are omitted to improve readabil-
ity.

Finally, the probability distribution of the entire re-
lation space can be calculated as the product of the
distribution of each relation graph with type t:

(5) Pr(R | C, O) =
∏
all t

Pr(Gt | C, O),

which completes the definition of the first term in
Equation 1.

2.2. Modeling Object Features

As stated previously, the feature space is modeled
as a mixture of distributions. Under this model, if an
object is assigned to a cluster, its features are assumed
to be sampled from the distribution specified by that
cluster’s parameters. The second term of Equation 1
is computed as:

(6) Pr(C | O) = α Pr(O | C) × Pr(C)

Where Pr(O | C) is derived using the distribution pa-
rameters and Pr(C) is computed as a multinomial dis-
tribution.

2.3. Learning an RPPM Model

We are currently using simulated annealing to eval-
uate the model’s potential. Simulated annealing is a
better choice than a more basic hill-climbing approach
because of the tradeoff between searching in the feature
space and searching in the relation space. It is possible
that a maximization in one space will reduce the term
in Equation 1 for the other space. This results in many
local maxima, making simulated annealing an appro-
priate choice. In Section 3.1, we show empirically that
simulated annealing can find the correct clustering.

There are two open-ended components of the model
that are domain-specific: the edge existence function
f(l, m) and the feature model distribution. The exper-
iments in this paper assume a mixture of Gaussians for
the feature model.

For the edge existence function, an intuitive repre-
sentation is to model an edge elm’s existence proba-
bility as a decreasing function of normalized Euclidean
distance (δlm). This models the situation where ob-
jects similar in the feature space are more likely to be
related. For example, people who are closer in age are
more likely to be roommates. Given this assumption,
we chose the following function for edge existence prob-
ability:

(7) Pr(elm | l ∈ Ci, m ∈ Cj , Λt) = e−δlm−(1−Λtij) .

We use a linear cooling schedule T = 1 − t
R , where

t is the elapsed time and R is a sufficiently large value
(set to 10,000 in the experiments in Section 3) that
controls the rate at which the temperature decreases.
At each time step t, the simulated annealing algorithm
generates a successor in the following way.

1. Select k × τ objects uniformly from the feature
space as candidates for moving. τ is an integer
≥ 1 that controls the number of objects selected.

2. For each selected candidate, choose a cluster to
assign it to randomly with uniform probability—it
may be assigned to the same cluster it is currently
assigned to.

3. For each cluster k, compute the maximum like-
lihood estimates for the feature and edge model
parameters.

2.4. A Lambda Matrix Estimator

To estimate the lambda values in Equation 3, RPPM
only needs to calculate the average value of f(l, m) for
each pair of objects (l, m), where l ∈ Ci and m ∈ Cj .
Then, let c be the number of observed edges from Ci

to Cj , and n be the total number of potential edges
between Ci and Cj (n = |Ci| ∗ |Cj |). A reasonable
estimate for the probability that an edge exists between
Ci and Cj is c

n . If the expected edge existence value
f̂(l, m) is known, it is straightforward to solve for Λtij :

c

n
− f̂(l, m) + 1 = Λtij .

There are cases where this estimator can produce Λt

entries that are not within the bounds of 0 ≤ Λtij ≤ 1.
This is because of the variable nature of the function f
and the relatively constant nature of c

n . In such cases
where the estimator computes an inconsistent value, we
constrain the value to be either one or zero, depending
on which boundary is violated.

3. Experimental Results

This section presents results from two experiments,
one using artificial data and one that analyzes a subset
of the Internet Movie Database. Where accuracy mea-
surements are reported, they refer to the average num-
ber of objects clustered correctly. Using pre-labeled
data, first collect a count of correctly clustered objects
in each cluster and sum these counts together. Divid-
ing this number by the total number of objects pro-
duces an accuracy value in the range [0,1]. Because it
is not known which learned cluster corresponds to each
true cluster, the accuracy calculation is computed for
all permutations of clusters and the maximum score is
returned.

3.1. The Impact of an Incorrect Hypothesis

This experiment uses artificial data that is generated
according to the RPPM specification, using the model
parameters described in Section 2.3.

As mentioned earlier, many researchers make the
assumption that all relations have a pull tendency. In-
stead of using RPPM to infer the edge model param-
eters, we fix them to initial values in order to simu-
late the effect of clustering data when different prior
assumptions about relation tendency are made. We
tested the accuracy of clustering under several differ-
ent modeling assumptions:

1. Ignoring relations,
2. Assuming all relations are push relations,
3. Assuming all relations are pull relations, and
4. Using the true lambda values for all relations.

The generated data sets have 250 two-dimensional ob-
jects in two clusters with three different relation types.
The features of the objects are generated from mul-
tidimensional Gaussians that were specified such that
a significant overlapping of the clusters existed. The
first relation type is a pull-type relation, with λI = 0.8
and λO = 0.2; the second relation type is a push-type
relation, with λI = 0.3 and λO = 0.6; and the third
is neither push nor pull, with λI = 0.3 and λO = 0.3.
The correct hypothesis assumes the parameters listed
above. The all-pull hypothesis assumes that the pa-
rameters are {0.9, 0.1} for all three graphs and the
all-push hypothesis assumes that the parameters are
{0.1, 0.9} for all three graphs.

Table 1 shows the clustering accuracy for each of the
above cases for three different runs. The most impor-
tant observation is that a significant performance ad-
vantage is present only when the correct hypothesis is

Assumption: Correct All Pull All Push
Graph & Features 0.9576 0.6640 0.5696

Graph Only 0.9564 0.6676 0.5768
Features Only 0.6432 0.6432 0.6432

Table 1. The impact of a poor hypothesis.
When the edge hypothesis is incorrect, the
optimal solution is not the correct clustering.

made. This means that making an incorrect assump-
tion about the tendency of a relation can have such
serious repercussions that it is better to ignore the re-
lations, unless the assumption is changed. This finding
supports Neville et al.’s [6] conclusions: as discussed
in Section 4, they concluded that it is best to ignore
relations if they do not agree with the features. With
RPPMs, the relations no longer need to be ignored, but
instead, their tendencies must either be correctly hy-
pothesized or inferred from observed data, as we have
done for our next set of experiments.

3.2. The Internet Movie Database Data Set

The Internet Movie Data Base (IMDB)1 is an on-
line resource containing information on movies, actors,
directors and producers, including links indicating var-
ious types of interrelations between the objects. It
has become a canonical data set for evaluating rela-
tional clustering algorithms. The data set used here
is a small subset of the entire database that contains
508 actors and 2756 undirected edges of a single type,
where an edge between two actors means that they
starred together in the same movie. There are eight bi-
nary features—has-award, active-in-90s, genre-drama,
genre-comedy, experienced, is-male, high-hsxrate, and
many-movies—with no missing values. The titles are
all self-explanatory, except for high-hsxrate, which is a
numeric ranking from the Hollywood stock exchange2.
The actors with a hsxrate greater than fifty have the
feature high-hsxrate set to one. One method for testing
a clustering algorithm is to remove one discrete feature
value and use it as a class label. The goal, then, is to see
if the clustering algorithm can use the remaining fea-
tures to find a clustering that corresponds to the class
label. The first two experiments investigate the data
in this way. The third experiment uses all eight feature
values, and a qualitative analysis is performed. Values
reported in these experiments are the maximum of five
random restarts of the simulated annealing algorithm.

Experiment 1: Full Inference of All Parameters
The first set of experiments uses the lambda matrix es-

1http://www.imdb.com
2http://www.hsx.com/

Feature Full Inference Features Only
Max Avg Std Max Avg Std

has-award 0.75 0.72 13.0 0.78 0.68 42.5
active-in-90s 0.75 0.72 10.4 0.82 0.72 29.5
high-hsxrate 0.64 0.61 25.8 0.60 0.57 17.8

Table 2. Clustering accuracy for the IMDB
data set. Each row specifies the results when
the given feature is used as a class label.

timator (Section 2.4) to investigate whether the single
relation type—starred-with—is a push-type, pull-type,
or neither type of relation. We performed a series of tri-
als, each using one of the eight features as a class label.
In all trials, the lambda estimator found a push-type
relation. The accuracy using RPPM with parameter
estimation was not significantly different on average
than clustering on the features only (Table 2).

Although RPPM did not improve the average ac-
curacy, the variance of the trials using inference was
lower. For example, when active-in-90s was used as
a class label, the best features-only score was much
higher, but the variance is also much higher, so that
the average accuracy—0.72—is the same as the aver-
age accuracy using inference, which is also 0.72. The
presence of both qualities implies that the considera-
tion of relations guides the search through a particular
portion of the search space, and that the relations are
indeed generated by a specific clustering.

Experiment 2: Fixing the Lambda Matrix In-
stead of allowing inference of the lambda matrix at
each iteration, these trials keep the parameter matrix
fixed. Two different situations are analyzed, each one
fixing Λ to first indicate a pull relation type, and then
to indicate a push relation type. The values in Λ were
chosen with guidance from the results in Experiment
1. There are two purposes for this experiment. The
first is to validate the results of Experiment 1, that
the lambda estimator is effective. The second is to see
if assuming a different relation type does indeed harm
performance, as claimed in Section 3.1.

As can be seen in Table 3, the use of a push-type
lambda matrix with similar values to the one inferred
in several trials in Experiment 1 produces similar re-
sults to Experiment 1. In fact, the average perfor-
mance is identical. The second column shows what
occurs when the relation tendencies are reversed: that
is, when the inter-cluster lambda values are presumed
to be low and the intra-cluster lambda values are pre-
sumed to be high. Just as with the artificial data sets,
making an incorrect assumption harms performance.

Experiment 3: Full Unsupervised Learning As
a final test of RPPM on the IMDB data set, we ran the

Feature Fixed Pull Type Fixed Push Type
Max Avg Std Max Avg Std

has-award 0.74 0.71 8.0 0.63 0.55 26.0
active-in-90s 0.74 0.71 3.7 0.59 0.57 14.4
high-hsxrate 0.65 0.63 7.8 0.53 0.52 4.3

Table 3. Clustering accuracy for the IMDB
data set when Λ is fixed.
Cluster 0 Shared Cluster 1
genre-comedy has-award genre-drama

active-in-90s experienced

is-male high-hsxrate

many-movies

Table 4. High-frequency features for both
clusters.

algorithm over all features. The results of the previous
two experiments suggest that the data fits relatively
well to a two-cluster configuration, so this trial searches
for a two-cluster set.

The analysis involves measuring the frequency that
each feature has a value of 1 for each object in both
clusters. These frequency counts help to characterize
the actors in the group. For example, if one cluster has
a high frequency of high-hsxrate and the other does
not, we can infer that the first cluster contains more
popular actors than the other one. Table 4 summa-
rizes the results of the frequency counts. Cluster 0 had
only one frequently positive-valued feature in genre-
comedy. This is not to say that it is its only defining
characteristic. It is also more frequent that the actors
in Cluster 0 are not drama stars, experienced, or have
a high hsx-rate, since cluster one had positive values
for those features with a higher frequency. Just as in
the previous experiments, the relation type inferred is
a push-type relation. The most likely interpretation of
an edge given these results is that experienced, popular
actors tend to star with inexperienced, less popular ac-
tors. This is intuitive, since movies with many popular
stars are rare compared to movies that have only one
superstar.

4. Related Work

Neville and Jensen [6] were some of the first re-
searchers to develop clustering algorithms that use both
object features and relations between objects. Their
method was to cluster relational data by incorporating
object feature similarity into the relational graph as
edge weights. Then adapted graph cutting algorithms
could be used to cluster the data hierarchically. Their
results showed a key concept in relational data cluster-
ing, which is that relational data clustering does well
if both the edges and object features individually pro-

vide a rich source for finding a particular clustering.
When this is the case, performance is high, but when
the edges do not agree with the features, the perfor-
mance is worse than if the edges were completely ig-
nored. In the context of RPPM, since their algorithm
searched for a minimum cut of a graph, it was essen-
tially making a pull-type assumption for all relations.
Their algorithm performs well when the relation is a
pull-type, but does not perform well with push-type
relations.

The most similar model to the RPPM is the Latent
Group Model (LGM) [7]. LGMs have the same depen-
dency for object features that RPPMs have: each fea-
ture value depends solely on the object’s cluster mem-
bership. Their model differs from RPPMs in their no-
tion of edge existence. They assume that in addition
to objects belonging to clusters, objects also belong to
a different, hidden grouping in the data, referred to as
a latent group. These latent groups represent coordi-
nating objects that are not part of the data set; these
coordinating objects represent the reason that objects
are in the same latent group. Edges then depend solely
on the groups to which its endpoint objects belong. An
object’s cluster also depends on the group the object
belongs in, so that objects that are in the same group
are more likely to be in the same cluster. Since edges
help determine the group an object belongs to, they
indirectly affect the cluster membership of the object.
LGMs differ from RPPMs in terms of their edge exis-
tence models. In RPPMs, edge existence depends on
the cluster membership of the objects, but in LGMs,
the cluster membership (indirectly) depends on edge
existence.

Finally, Kubica et al. [5] present a model where links
exist as the result of some event (e.g., a phone call or
a meeting). They use this model to detect groups of
associated people from a social network. Their model
is effective in representing such a situation, but does
not generalize well to other problems. Further work is
necessary to determine if RPPM can detect the same
groups as Kubica et al.’s work.

5. Future Work

Discrete Data: Many relational data sets in exis-
tence do not contain any numeric data. RPPM’s flex-
ibility for specifying the kinds of distributions for ob-
ject and edge existence will allow the use of a discrete
method, such as Latent Dirichlet Allocation [2], to de-
velop a method for incorporating both relations and
discrete features into a single model.

Heterogeneous Data: Feature-based compari-
son of heterogeneous objects is difficult and sometimes

impossible. RPPM can be used to cluster data with-
out comparing object features, as showed in our ex-
periments. If a reasonable model for edge existence
between different typed objects could be developed,
RPPM could be used to cluster heterogeneous data.

6. Conclusion

The Relational Push-Pull Model is a unique frame-
work that models the specific tendencies that a rela-
tion can have with regards to a specific clustering. This
model expands the space of possible clusterings beyond
previous works that considered all relations to be pull-
type relations. By searching in this expanded space,
we showed that better clusterings may be discovered
for different data sets. However, the complexity of re-
lational data sets and the computational complexity of
using a probabilistic approach to relational data clus-
tering are both major limitations of Relational Push-
Pull Models. Given additional modifications to the
model, further refinement of the search method, and
the inclusion of discrete methods or subroutines, we
believe that Relational Push-Pull Models will become
a useful tool for clustering complex relational data.

References

[1] I. Bhattacharya and L. Getoor. Entity resolution in
graph data. Technical Report CS-TR-4758, University
of Maryland, October 2005.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirich-
let allocation. Journal of Machine Learning Research,
3:993 – 1022, 2006.

[3] L. Getoor, N. Friedman, D. Koller, and B. Taskar.
Learning probabilistic models of link structure. Journal
of Machine Learning Research, 3:679–707, 2002.

[4] D. Jensen and J. Neville. Linkage and autocorrelation
cause feature selection bias in relational learning. In
Proc. ICML-02, pages 259 – 266, 2002.

[5] J. Kubica, A. Moore, J. Schneider, and Y. Yang.
Stochastic link and group detection. In Proc. AAAI-
02, pages 798–804, 2002.

[6] J. Neville, M. Adler, and D. Jensen. Clustering rela-
tional data using attribute and link information. In Pro-
ceedings of the Text Mining and Link Analysis Work-
shop. IJCAI-03, 2003.

[7] J. Neville and D. Jensen. Leveraging relational autocor-
relation with latent group models. In Proc. ICDM-06,
2006.

[8] B. Taskar, E. Segal, and D. Koller. Probabilistic clas-
sification and clustering in relational data. In Proc.
IJCAI-01, pages 870–878, 2001.

